

MODULE SPECIFICATION

Part 1: Information					
Module Title	Solid	Mechanics			
Module Code	UFMFSP-30-1		Level	Level 4	
For implementation from	2019-	20			
UWE Credit Rating	30		ECTS Credit Rating	15	
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics	
Department	FET [Dept of Engin Design & Mathematics			
Module type:	Stand	tandard			
Pre-requisites		None			
Excluded Combinations		None			
Co- requisites		None			
Module Entry requirements		None			

Part 2: Description

Educational Aims: This module covers fundamental physical concepts and mathematical models of static and dynamic systems. It will cover modelling of such systems in software packages.

Outline Syllabus: Statics:

Static Equilibrium
Supports
Loads and Joint
Materials Stress and Strain
Beams
Torsion and Shafts
Pressure Vessels

Dynamics:

Fundamentals of Dynamics Newton's Law of Motion Diagrams

STUDENT AND ACADEMIC SERVICES

Energy, Momentum and Impulse Rotational Energy, moments and torque Springs

In this module students will be introduced to the following mathematical concepts:

Engineering Functions
Matrices and Algebra
Integration
Differential Equations
Laplace Transforms
Solving Differential Equations using computer software

Teaching and Learning Methods: Learners will carry out a series of experimental tasks involving the interpretation and critical evaluation of data.

Part 3: Assessment

Component A – Oral Examination – This oral examination will assess the learners' ability to conduct and communicate technical principles and calculations in an effective way when confronted with a new problem.

Component B – Technical Report Portfolio – Learners will perform workshop based practicals and submit a portfolio of reports based on the mechanics principles involved.

The resit assessment tasks for this module will involve a rework and reflective evaluation of the work carried out in the original task.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Technical report portfolio
Examination - Component A	✓	25 %	Oral Examination (1 Hour)
Resit Components	Final Assessment	Element weighting	Description
	Assessment	weighting	
Portfolio - Component B	Assessment	75 %	Technical report portfolio

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes	Reference					
	Conduct stress and dynamics analysis calculations.	MO1					
	Explain the theoretical principles of stress and dynamics.	MO2					
	Conduct computer-based stress and dynamics modelling.	MO3					
	Interpret and critically evaluate experimental data.	MO4					
Contact Hours	Independent Study Hours:						

STUDENT AND ACADEMIC SERVICES

	Independent study/self-guided study	228
	Total Independent Study Hours:	228
	Scheduled Learning and Teaching Hours:	
	Face-to-face learning	72
	Total Scheduled Learning and Teaching Hours:	72
	Hours to be allocated	300
	Allocated Hours	300
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html	

Part 5: Contributes Towards	
This module contributes towards the following programmes of study:	