

MODULE SPECIFICATION

Part 1: Information							
Module Title	Thermofluidic Dynamics	mofluidic Dynamics					
Module Code	UFMFTP-30-1	Level	Level 4				
For implementation from	2018-19	-19					
UWE Credit Rating	30	ECTS Credit Rating	15				
Faculty	Faculty of Environment & Technology	Field	Engineering, Design and Mathematics				
Department	FET Dept of Engin Design &	T Dept of Engin Design & Mathematics					
Contributes towards	Mechanical Engineering with Nuclear {Apprenticeship} [Sep][PT][BTC][4yrs] BEng (Hons) 2018-19 Electromechanical Engineering (Nuclear){Apprenticeship}(Sep][PT][BTC][3yrs] FdSc 2018-19 Electrical, Electronic and Control Engineering with Nuclear {Apprenticeship} [Sep][FT][BTC][4yrs] BEng (Hons) 2018-19						
Module type:	Standard						
Pre-requisites	None	None					
Excluded Combinations	None	None					
Co- requisites	None	None					
Module Entry requireme	nts None	None					

Part 2: Description

Educational Aims: In this module learners will develop their mathematical analysis, practical and professional skills. It will cover fundamental concepts of thermal fluid dynamics and steam power generating plant.

Outline Syllabus: Thermofluidic Dynamics investigates the ideal gas laws and energy that is related to the flow of fluids and looks at the mathematical model of both. It analyses fluid networks to be able to identify the causes and remedies of pressure losses. The module also evaluates fluid machines and two phase flow.

Topic covered in this module:

Thermodynamics:

Fundamentals Conservation of Energy and Mass Thermodynamic Laws Fluid Networks Flow Measurement Sheer Stress & Rate Laminar and Turbulent Flow Pressure Losses Fluid Machines

Flow:

Void Fractions Steam Quality Flow Patterns Pressure Losses

In this module the following mathematical concepts will be introduced and developed:

Dimensions and Physical Quantities Differentiation Integration Numerical Methods Using Matlab Programming Structures

Teaching and Learning Methods: See Assessment and Outline Syllabus

Part 3: Assessment

Component A – Multiple Choice Exam – 90 minutes – This exam will assess the learners' understanding of core concepts of Fluid and Thermodynamics. It will also assess the learners' mathematical analysis skills of fluid and thermodynamics calculations.

Component B – Reflective Review – This portfolio will assess learners' ability to explain the causes of and solutions to pressure losses in a system. Learners must also analyse the different fluid machines and flow. The students must capture workshop based evidence and then provide a reflective review of the evidence to justify proposals for improvement to in-service thermofluidic systems.

The resit assessment tasks for this module will involve a rework and reflective evaluation of the work carried out in the original task.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Reflective review
Examination - Component A	~	25 %	Multiple Choice (90 minutes)
Resit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Reflective review
Examination - Component A	~	25 %	Multiple Choice (90 minutes)

	Part 4:	Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will be able to:							
		Module Learning Outcomes						
	MO1	101 Conduct flow energy and ideal gas system calculat						
	MO2	Explain the causes and remedies of pressure networks.						
	MO3	Analyse the use of fluid machines in flow networks.						
	MO4	Propose and justify improvements to in-service thermofluidic systems.						
Contact Hours	Contact Hours							
	Independent Study Hours:							
	Independent study/	228						
		Total Independent Study Hours:	228					
	Scheduled Learning and Teaching Hours:							
	Face-to-face learnin	72						
	Total Sch	72						
	Hours to be allocated		300					
	Allocated Hours		300					
Reading List	The reading list for this modul https://uwe.rl.talis.com/index.h	le can be accessed via the following link: ntml						