

MODULE SPECIFICATION

Part 1: Information						
Module Title	Non L	Non Linear Structural Analysis				
Module Code	UBGMUA-15-M		Level	Level 7		
For implementation from	2020-	2020-21				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Geography and Environmental Management		
Department	FET [ET Dept of Geography & Envrnmental Mgmt				
Module type:	Stand	Standard				
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: In this module, you will examine the analysis of non-linear behaviour of structures.

Educational Aims: See Learning Outcomes

Outline Syllabus: The module will cover:

Geometric non-linearity, buckling and geometric stiffness.

Equilibrium paths.

P-delta effects.

Material non-linearity.

Inelastic buckling.

Numerical solutions for non-linear structural analysis.

Non-linear dynamic response of structures.

STUDENT AND ACADEMIC SERVICES

Capacity design principles for earthquake engineering.

Teaching and Learning Methods: See Assessment.

Part 3: Assessment

Component A: Written examination.. Learning outcomes 1, 2, 3 and 5.

A written examination allows for the effective assessment of the individual student's ability to demonstrate the learning applications, as applied to technical problems. Formative support will be provided through the module via tutorial sheets and timetabled tutorial sessions.

Component B: Report (1000 words excluding appendices and references) Learning outcome 4.

A coursework submission to demonstrate the ability to use numerical modelling to analyse and design a structure under complex loading that includes earthquakes. The report must show ability to present the design outcomes in professional drawings and sketches.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		30 %	Coursework (1000 words report, excluding appendices and references).
Examination (Online) - Component A	✓	70 %	Online Examination
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		30 %	Coursework (1000 words report, excluding appendices and references)
Examination (Online) - Component A	✓	70 %	Online Examination

	Part 4: Teaching and Learning Methods				
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:				
	Module Learning Outcomes	Reference			
	Identify when geometric and material non linearity may be important for structural systems.	MO1			
	Calculate the geometric stiffness of discrete systems.	MO2			
	Calculate the non-linear response of simple structural systems.	MO3			
	Use non-linear finite element analysis to design complex structures taking into consideration health and safety issues during design stage.	MO4			
	Use material and geometric non linearity to assess structures subject to dynamic loads.	MO5			
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study 1	.14			

STUDENT AND ACADEMIC SERVICES

	Total Independent Study Hours:	114
	Scheduled Learning and Teaching Hours:	
	Face-to-face learning	36
	Total Scheduled Learning and Teaching Hours:	36
	Hours to be allocated	150
	Allocated Hours	150
Reading List	The reading list for this module can be accessed via the following link:	
	https://uwe.rl.talis.com/modules/ubgmua-15-m.html	

Part 5: Contributes Towards	3
This module contributes towards the following programmes of study:	