

MODULE SPECIFICATION

Part 1: Information							
Module Title	Found	Foundation Mathematics for the Built Environment					
Module Code	UBLMSA-15-0		Level	Level 3			
For implementation from	2019-	2019-20					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Architecture and the Built Environment			
Department	FET [Dept of Architecture & Built Environ					
Module type:	Stand	dard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: This module develops skills in algebra and calculus through applied problembased numerical methods.

Outline Syllabus: Algebra

Introduction to Algebra. Simultaneous Linear Equations. Linear Equations and Graphs. Quadratic Equations. Solving Quadratics by completing the square. Graphs of Quadratic Functions. Simultaneous Solution of Quadratic and Linear Equations. Introduction to Partial Fractions.

Functions

Functions and inverses. Function of a Function. Properties of standard functions used in engineering: polynomial, rational, trigonometric, exponential and logarithmic functions.

Calculus

Differential Calculus. The Derivatives of other Functions. Maxima and Minima. The Chain Rule. The Product Rule and Quotient Rule. The Second Derivative. Integration. The Definite Integral. Introduction to Integration by Parts.

Teaching and Learning Methods: The learning strategy is to guide students through highly structured workbooks that encourage active learning.

Part 3: Assessment

The assessment strategy uses continuous assessment to provide feedback to students so that they can assess their progress throughout the year and an end of module examination to assess whether students have reached an appropriate standard in mathematics to progress to single honours programmes in design engineering.

Component A Exam - a two hour end of module examination has been chosen to test numeracy and the understanding and knowledge of the fundamentals of physics, engineering and mathematics under controlled conditions.

Component B e-assessments - consists of a series of e-assessments that provide instant feedback and a midsessional examination that will provide feedback on written work.

First Sit Components	Final Assessment	Element weighting	Description
Online Assignment - Component B		25 %	E-assessment
Examination - Component A	~	75 %	Exam (2 Hours)
Resit Components	Final Assessment	Element weighting	Description
Online Assignment - Component B		25 %	E-assessment
Examination - Component A	\checkmark	75 %	Exam (2 Hours)

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes		Reference				
	Perform numerical calculations to an appropriate level of accuracy						
	Solve equations that involve standard mathematical functions used in engineering MO2						
	Differentiate and integrate standard mathematical functions used in engineering MO3						
	Select and apply suitable mathematical techniques to solve extended	problems	MO4				
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study 114						
	Total Independent Study Hours:	11	14				
	Scheduled Learning and Teaching Hours:						

	Face-to-face learning	36		
	Total Scheduled Learning and Teaching Hours:	36		
	Hours to be allocated	150		
	Allocated Hours	150		
Reading List	The reading list for this module can be accessed via the following link:			
	https://uwe.rl.talis.com/modules/ublmsa-15-0.html			

Part 5: Contributes Towards

This module contributes towards the following programmes of study: