

MODULE SPECIFICATION

Part 1: Information							
Module Title	High Speed Electronic System Design						
Module Code	UFMFUN-15-M		Level	Level 7			
For implementation from	2019-20						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET Dept of Engin Design & Mathematics						
Module type:	Standard						
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: The module provides a systematic view of the performance limitations related to high-speed electronic systems and their dependencies on the underlying technology choices. The key focus is how the interconnects (wires), all the way from system level to chip-level affect the system performance and how it will define the performance, reliability and the price of the end-product. The students will develop a thorough theoretical basis of the fundamental system level electrical issues and gain experience to design, simulate, and analyse electronic circuits.

Educational Aims: This module will extend and further develop the practical, theoretical and professional skills needed for designing and implementing complex digital systems for a wide range of applications.

Outline Syllabus: The syllabus includes the following topics:

Interconnect modelling: wires, Connectors, Vias, and Solder Bumps

Signal Integrity Issues in Electronic Systems

Power Supply Noise and Power Delivery Systems

EMC/EMI Fundamentals in Electronic Systems

STUDENT AND ACADEMIC SERVICES

Shielding and Electrostatic Discharge (ESD) Protection

Thermal Design in Electronic System

Production and Disposal of Electronic Systems

Teaching and Learning Methods: An initial set of structured laboratory exercises will extend the students understanding of the tools and techniques required, followed by a problem based exercise. These exercises will provide the basis for the assessed coursework and for the laboratory exams.

Part 3: Assessment

Summative assessment will be achieved through

(Component A). Will involve a presentation on a case study that will assess the student's ability to correctly understand and predict performance limitations factors in high speed electronic circuits. The presentation will be for 15 minutes followed by questions.

(Component B) Students will undertake a series of practical design, simulation and implementation tasks based on laboratory work. Students will select four tasks to submit as part of portfolio. Each task will lead to a short report (500 words) where students evaluate and reflect on their design solutions. The reports will form a portfolio (2,000 words).

Formative feedback will provided through verbal feedback during laboratory sessions and through tutorial exercises.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Design portfolio (2,000 words)
Presentation - Component A	✓	25 %	Individual Presentation (15 minutes)
Resit Components	Final Assessment	Element weighting	Description
Resit Components Portfolio - Component B			Description Design portfolio (2,000 words)

	Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the follo	owing learning	outcomes:					
	Module Learning Outcomes Use quantitative methods and appropriate computer software tools to complex electronic systems from printed circuits board (PCB) level to	higher levels	MO1					
	Explain and apply basic principles and design guidelines to complex electronic systems							
	Identify and manage cost drivers in the design and development of el systems and model the performance of electronic system		MO3 MO4					
	Apply analytical methods (i.e. circuit theory) and modelling techniques (i.e. electronic device models) to the identification, classification and description of electronic circuits and their performance in response to a range of externally applied stimuli.							
	Analyse systematically the key electrical phenomena at interconnection substrate levels defining the system signal integrity and robustness properties in order to define the future constraints to integration for consumer electronic products.							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	126						
	Total Independent Study Hours: 12							
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	2	24					
	Total Scheduled Learning and Teaching Hours:							
	Hours to be allocated	15	0					
	Allocated Hours	150						
Reading List	The reading list for this module can be accessed via the following link:							

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Digital Electronic Systems Engineering {Apprenticeship} [Jan][PT][Frenchay][2yrs] MSc 2018-19