
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Fundamentals of Software Development

Module Code UFCFQM-30-1 Level Level 4

For implementation
from

2020-21

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Module type:

Project

Pre-requisites

None

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

Part 2: Description

Overview: Students will learn the basic concepts of software design, data structures,
programming, problem solving, programming logic, and fundamental software design techniques.
This will include a review of traditional and contemporary software development methods
including agile development. They will develop a holistic view of software engineering practice
including gathering requirements, designing a solution, implementing a solution in a programming
language, testing the completed application and deploying the solution to end users.

Educational Aims: The purpose of this topic is to introduce the students to the fundamental
concepts of systems development through programming, computational thinking and data
structures. They will analyse models of application development so that they can understand the
key processes related to building functioning applications and appreciate the complexity of
application development.

Outline Syllabus: Development lifecycles and their differences (e.g. Waterfall model, Agile)

Application of programming principles to business requirements (e.g. design, code, test, correct,
deploy and document) including the approach required

Role of legacy systems in program development

Programming paradigms and the reasoning behind selecting it for business requirements (e.g.

STUDENT AND ACADEMIC SERVICES

2

Event Driven, Object Orientation, Procedural)

Analyse business’ software requirements to create a sound solution

Develop a program using an industry recognised language and development lifecycle model (e.g.
Design, implement, test and debug)

Create modifications to a created to program to meet program requirements

Testing facilities and tracking to be able to debug created program code to understand and rectify
problems within the code (e.g. white box, black box, unit testing)

Usage of industry standards to create robust and efficient code and understanding the necessity
of this practice for both solo and group projects

Creation of end user training (e.g. User guide, Tooltips, help facilities)

Teaching and Learning Methods: Introductory lectures are supported by seminars, case
studies, and practical workshops. In addition, this module will be supported by interactive forums
and learning tools.

Independent learning includes hours engaged with essential reading, assignment and
completion. Study time will be organised each week with a series of both essential and further
readings.

This module will be based on ensuring that student's practical skills are developed in
programming. Every session will incorporate designated practical work to complete in order to
ensure that students understand and implement principles of good practice.

Part 3: Assessment

This module is assessed by a combination of techniques: a report (3,000 words) and a practical build.

Component A1 – Report

Students will be required to write a 3,000-word report that will identify the core concepts that a software developer
will need to follow in the development of software applications. Students will need to discuss the stages of a
different development lifecycles and their stages.

Students will be required to understand the application of programming principles throughout the stages of the
lifecycle model and how to approach each stage. Within the development stage, they should also be able to
identify the reasoning behind selecting a paradigm for the development task.

Students will need to be able to demonstrate their understanding of why legacy systems are used within a
business environment to test new or existing projects.

Component A2 – Practical Build

Students will be given a business specification from which they will produce a solution. They will need to design
their systems and apply their knowledge of the development lifecycle models to create a sound system.

The task will include practical software design, development, implementing, testing and debugging. The testing of
the program will need to be robust and thorough, using techniques such as white and black box testing. After the
testing, students will be required to modify their existing code base and apply new fixes or modules from their
requirements and testing. The program will need to be fully documented and conform to industry standards.

Students will be required to create end user training that should be able to be delivered with a successful system.

Opportunities for formative assessment exist for the assessment strategy used. Verbal feedback and written
feedback is given to all students providing a personal platform for improvement.

STUDENT AND ACADEMIC SERVICES

3

First Sit Components Final
Assessment

Element
weighting

Description

 Project - Component A
 60 %

Fully Documented (e.g. technical, user guide,
algorithms) and Implemented System

 Report - Component A
✓ 40 % Report (3,000 words)

Resit Components Final
Assessment

Element
weighting

Description

 Project - Component A
 60 %

Fully Documented (e.g. technical, user guide,
algorithms) and Implemented System

 Report - Component A
✓ 40 % Report (3,000 words)

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will achieve the following learning outcomes:

Module Learning Outcomes Reference

Understand basic programming concepts. MO1

Understand programming principles including design, code, test, correct, deploy
and document from supplied specifications, using agreed standards and tools.

MO2

Understand the stages of a software development lifecycle. MO3

Understand the similarities and differences between agile and waterfall software
development methodologies.

MO4

Be aware of the role and position of legacy systems in organisations and how new
development environments interface and integrate with them.

MO5

Understand how teams work effectively to produce software. MO6

Understand software design approaches and patterns and can interpret and
implement a given design.

MO7

Analyse business and technical requirements and select appropriate solutions. MO8

Design, implement, test, and debug software to meet a requirement’s
specification.

MO9

Select the relevant paradigm for a given set of business requirements. MO10

Develop moderately complex software solutions and software modifications to
specified requirements.

MO11

Debug own code and understand structure of programmes in order to identify and
resolve issues.

MO12

Identify and apply best practices and standards. MO13

Contact
Hours

Independent Study Hours:

Independent study/self-guided study 228

Total Independent Study Hours: 228

Scheduled Learning and Teaching Hours:

Face-to-face learning 72

STUDENT AND ACADEMIC SERVICES

4

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Total Scheduled Learning and Teaching Hours: 72

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://rl.talis.com/3/uwe/lists/363CA84E-881E-B1F4-1B7D-9861A48A8EA9.html

