
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Fundamentals of Software Development

Module Code UFCFQM-30-1 Level Level 4

For implementation
from

2018-19

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Contributes towards

Module type:

Project

Pre-requisites

None

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

Part 2: Description

Overview: The purpose of this topic is to introduce the apprentices to the fundamental concepts
of systems development through programming, computational thinking and data structures. They
will analyse models of application development so that they can understand the key processes
related to building functioning applications and appreciate the complexity of application
development.

Educational Aims: Apprentices will learn the basic concepts of software design, data structures,
programming, problem solving, programming logic, and fundamental software design techniques.
This will include a review of traditional and contemporary software development methods
including agile development. They will develop a holistic view of software engineering practice
including gathering requirements, designing a solution, implementing a solution in a programming
language, testing the completed application and deploying the solution to end users.

Outline Syllabus: Development lifecycles and their differences (e.g. Waterfall model, Agile)

Application of programming principles to business requirements (e.g. design, code, test, correct,
deploy and document) including the approach required

STUDENT AND ACADEMIC SERVICES

2

Role of legacy systems in program development

Programming paradigms and the reasoning behind selecting it for business requirements (e.g.
Event Driven, Object Orientation, Procedural)

Analyse business’ software requirements to create a sound solution

Develop a program using an industry recognised language and development lifecycle model (e.g.
Design, implement, test and debug)

Create modifications to a created to program to meet program requirements

Testing facilities and tracking to be able to debug created program code to understand and rectify
problems within the code (e.g. white box, black box, unit testing)

Usage of industry standards to create robust and efficient code and understanding the necessity
of this practice for both solo and group projects

Creation of end user training (e.g. User guide, Tooltips, help facilities)

Teaching and Learning Methods: Introductory lectures are supported by seminars, case
studies, visits and practical workshops. In addition, this module will be supported by interactive
forums and learning tools.

300 hours study time of which 72 hours will represent scheduled learning.

Independent learning includes hours engaged with essential reading, assignment and
completion. Apprentice study time will be organised each week with a series of both essential
and further readings.

This module will be based on ensuring that apprentice’s practical skills are developed in
programming. Every session will incorporate designated practical work to complete in order to
ensure that apprentices understand and implement principles of good practice.

Part 3: Assessment

This module is assessed by a combination of techniques: a report (3,000 words) and a practical build.

Component A1 – Report

Apprentices will be required to write a 3,000-word report that will identify the core concepts that a software
developer will need to follow in the development of software applications. Apprentices will need to discuss the
stages of a different development lifecycles and their stages.

Apprentices will be required to understand the application of programming principles throughout the stages of the
lifecycle model and how to approach each stage. Within the development stage, they should also be able to identify
the reasoning behind selecting a paradigm for the development task.

Apprentices will need to be able to demonstrate their understanding of why legacy systems are used within a
business environment to test new or existing projects.

Component A2 – Practical Build

Apprentices will be given a business specification from which they will produce a solution. They will need to design
their systems and apply their knowledge of the development lifecycle models to create a sound system.

The task will include practical software design, development, implementing, testing and debugging. The testing of
the program will need to be robust and thorough, using techniques such as white and black box testing and unit
testing. After the testing, apprentices will be required to modify their existing code base and apply new fixes or

STUDENT AND ACADEMIC SERVICES

3

modules from their requirements and testing. The program will need to be fully documented and conform to industry
standards.

Apprentices will be required to create end user training that should be able to be delivered with a successful
system.

Opportunities for formative assessment exist for the assessment strategy used. Verbal feedback and written
feedback is given to all apprentices providing a personal platform for improvement.

First Sit Components Final
Assessment

Element
weighting

Description

 Report - Component A
✓ 40 % Report (3,000 words)

 Project - Component A
 60 %

Fully Documented (e.g. technical, user guide,
algorithms) and Implemented System

Resit Components Final
Assessment

Element
weighting

Description

 Report - Component A
✓ 40 % Report (3,000 words)

 Project - Component A
 60 %

Fully Documented (e.g. technical, user guide,
algorithms) and Implemented System

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will be able to:

 Module Learning Outcomes

MO1 Understand basic programming concepts.

MO2 Understand programming principles including design, code, test,
correct, deploy and document from supplied specifications, using
agreed standards and tools.

MO3 Understand the stages of a software development lifecycle.

MO4 Understand the similarities and differences between agile and
waterfall software development methodologies.

MO5 Be aware of the role and position of legacy systems in
organisations and how new development environments interface
and integrate with them.

MO6 Understand how teams work effectively to produce software.

MO7 Understand software design approaches and patterns and can
interpret and implement a given design.

MO8 Analyse business and technical requirements and select
appropriate solutions.

MO9 Design, implement, test, and debug software to meet a
requirement’s specification.

MO10 Select the relevant paradigm for a given set of business
requirements.

MO11 Develop moderately complex software solutions and software
modifications to specified requirements.

MO12 Test code and analyse results to correct errors found using unit
testing.

MO13 Debug own code and understand structure of programmes in
order to identify and resolve issues.

MO14 Identify and apply best practices and standards.

MO15 Identify and implement plans for end user training and built in
tool tips and help facilities.

STUDENT AND ACADEMIC SERVICES

4

Contact
Hours

Contact Hours

Independent Study Hours:

Independent study/self-guided study 228

Total Independent Study Hours: 228

Scheduled Learning and Teaching Hours:

Face-to-face learning 72

Total Scheduled Learning and Teaching Hours: 72

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/index.html

