

### MODULE SPECIFICATION

| Part 1: Information       |                                     |                                      |                    |                                               |  |  |  |
|---------------------------|-------------------------------------|--------------------------------------|--------------------|-----------------------------------------------|--|--|--|
| Module Title              | Paral                               | Parallel Computing                   |                    |                                               |  |  |  |
| Module Code               | UFCFFL-15-M                         |                                      | Level              | Level 7                                       |  |  |  |
| For implementation from   | 2020-21                             |                                      |                    |                                               |  |  |  |
| UWE Credit Rating         | 15                                  |                                      | ECTS Credit Rating | 7.5                                           |  |  |  |
| Faculty                   | Faculty of Environment & Technology |                                      | Field              | Computer Science and Creative<br>Technologies |  |  |  |
| Department                | FET [                               | Dept of Computer Sci & Creative Tech |                    |                                               |  |  |  |
| Module type:              | Stand                               | andard                               |                    |                                               |  |  |  |
| Pre-requisites            |                                     | None                                 |                    |                                               |  |  |  |
| Excluded Combinations     |                                     | None                                 |                    |                                               |  |  |  |
| Co- requisites            |                                     | None                                 |                    |                                               |  |  |  |
| Module Entry requirements |                                     | None                                 |                    |                                               |  |  |  |

### Part 2: Description

**Overview**: The module will cover the theory and background and state-of-art knowledge of parallel computing field in line with related computing fields such as distributed and high-performance computing extended with cluster and cloud computing.

**Educational Aims:** The main aim is to develop skills in problem solving using high performance computing infrastructures and state of art technologies for real world computing and engineering problems.

Outline Syllabus: The module content can be outlined in the following syllabus:

Parallel Computing: Introduction to parallel computing Introduction to parallel architectures Parallel programming abstractions, e.g. OpenMP, Actors, TBB

Heterogeneous Computing: GPUs, DSPs, etc. Parallel programming abstractions, e.g. OpenCL 4.1, Cuda Applications, e.g. image processing, HPC Distributed Computing (overview, to provide context with parallel): Clusters High-Performance Computing Cloud computing

Teaching and Learning Methods: See Syllabus and Assessment.

#### Part 3: Assessment

The assessment of this module is based on two components; Component A is a condition-controlled assessment via written unseen exam, It will cover the majority of the learning outcomes from LO1 to LO5 focusing on the theory and state-of-art knowledge of parallel computing. The second component, Component B, is a coursework assignment, which will assess the practical skills through demonstration of innovative solutions designed and developed for practical problems along with submission of a logbook.

Component B is a single component, which includes a demonstrable development, (parallel algorithms to solve a given problem), and a logbook to report the stages, progress and performance analysis of the development. Both demonstration and the logbook are separately assessed.

The summative assessment will be achieved based on these two assessment components (Component A and B) while the formative assessment will be provided as oral feedback throughout the laboratory sessions particularly with respect to the design development and the log-book entries.

Resit:

Resit coursework requires reworking the original assignment, which should be improved following the summative feedback from the first sit. The development should be revised to meet the requirements, and the logbook should be re-written accordingly. The demonstration of development will be videoed for submission together with logbook.

| First Sit Components                  | Final<br>Assessment | Element<br>weighting | Description                                                                      |
|---------------------------------------|---------------------|----------------------|----------------------------------------------------------------------------------|
| Portfolio - Component B               | ~                   | 60 %                 | Logbook (2000- 3000 words) and practical demonstration of final product          |
| Examination (Online) -<br>Component A |                     | 40 %                 | Online Written Examination (2 hours)<br>24 hour window                           |
| Resit Components                      | Final<br>Assessment | Element<br>weighting | Description                                                                      |
| Portfolio - Component B               | ~                   | 60 %                 | Logbook (2000- 3000 words) and video<br>demonstration of final product (15 mins) |
| Examination (Online) -<br>Component A |                     | 40 %                 | Online Written Examination (2 hours)<br>24 hour window                           |

| Part 4: Teaching and Learning Methods |                                                                                                                                                  |     |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| Learning<br>Outcomes                  | On successful completion of this module students will achieve the following learning outcomes:                                                   |     |  |  |
|                                       | Module Learning Outcomes                                                                                                                         |     |  |  |
|                                       | Distinguish, contrast, and apply the main concepts of sequential, concurrent, and parallel computing                                             | MO1 |  |  |
|                                       | Be able to critically evaluate and assess the effectiveness of parallel computation in homogenous and heterogeneous environments                 | MO2 |  |  |
|                                       | Distinguish, contrast, and reflect between different hardware abstractions for parallelism, e.g. multi-core, many-core, and vector architectures | MO3 |  |  |

# STUDENT AND ACADEMIC SERVICES

|                  | Develop programs for parallel systems, e.g. using OpenMP for single-node | e, and MO4 |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------|------------|--|--|--|--|--|
|                  | Cuda for accelerators, and MPI for multi-node                            | MO5        |  |  |  |  |  |
|                  | Develop parallel designs and algorithm design and implementation         | IVIO5      |  |  |  |  |  |
|                  |                                                                          |            |  |  |  |  |  |
| Contact<br>Hours | Independent Study Hours:                                                 |            |  |  |  |  |  |
|                  | Independent study/self-guided study                                      | 114        |  |  |  |  |  |
|                  | Total Independent Study Hours:                                           | 114        |  |  |  |  |  |
|                  | Scheduled Learning and Teaching Hours:                                   |            |  |  |  |  |  |
|                  | Face-to-face learning                                                    | 36         |  |  |  |  |  |
|                  | Total Scheduled Learning and Teaching Hours:                             | 36         |  |  |  |  |  |
|                  | Hours to be allocated                                                    | 150        |  |  |  |  |  |
|                  | Allocated Hours                                                          | 150        |  |  |  |  |  |
| Reading<br>List  | The reading list for this module can be accessed via the following link: |            |  |  |  |  |  |
|                  | https://uwe.rl.talis.com/modules/ufcffl-15-m.html                        |            |  |  |  |  |  |

## Part 5: Contributes Towards

This module contributes towards the following programmes of study: