

MODULE SPECIFICATION

Part 1: Information								
Module Title	Mechanics of Composites							
Module Code	UFMFVL-15-M		Level	Level 7				
For implementation from	2019-20							
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET I	Dept of Engin Design & Mathematics						
Module type:	Stand	ndard						
Pre-requisites		Stress Analysis 2019-20						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Introduction to micro/macro mechanics of composite materials

Classical laminate theory

Strength of laminates

Failure criterions for laminates

Stability of composites (buckling)

Environmental effects (temperature and moisture)

Introduction to Finite Element Analysis: overview of FEA applications, nodes, elements, meshes, stiffness matrix, and boundary conditions - loads and restraints.

Practical Composite FE modelling techniques: e.g.: Planning, pre-processing, model solution,

post processing, symmetry, convergence tests, boundary conditions, element types/selection, coordinate systems, mesh creation.

Teaching and Learning Methods: This module is supported by computer practical sessions. Study time outside of contact hours will be spent on worked exercises and example problems.

Scheduled learning includes lectures, tutorials and computer practical sessions

Independent learning includes hours engaged with essential reading, software, assignment preparation and completion etc. These sessions constitute an average time per level as indicated in the table below.

There are a total of 36 scheduled contact hours for lecturing and tutorials:

Lectures/tutorials: 36 hours Self-directed learning : 60 hours Coursework: 27 hours Exam preparation : 27 hours Total hours : 150

Part 3: Assessment

The module is assessed using two components of assessment where both theoretical concepts and practical implementation of finite element methods to engineering structural analysis problems.

A two hour written end of module examination is used to assess concepts in finite element theory and methods under controlled conditions.

The coursework component is designed to assess modelling using software packages, and competence in critically evaluating and analysing results of a computational structural analysis. The output of this coursework will be a report in the style of a 10 page conference paper. A template will be provided to help students structure the report appropriately.

The referred coursework will involve a reworking of the first sit submission taking into account feedback to improve the quality of the work. In the event of any non-submission of coursework a new but equivalent task will be published.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		60 %	Individual Report
Examination - Component A	~	40 %	Exam (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		60 %	Individual report
Examination - Component A	~	40 %	Exam (2 hours)

Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:							
	Module Learning Outcomes							
	Design and undertake substantial investigations to address significant areas of theory and practice in structural modelling							
	Select appropriate advanced methodological approaches and critically evaluate their effectiveness							
	Apply appropriate theoretical and practical methods to the analysis and solution of engineering problems							
	Demonstrate and critically evaluate current theoretical and methodological approaches through use of professional literature							
	Act with initiative in decision-making within professional or given guidelines							
	Communicate effectively using professional engineering terms							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	114						
	Total Independent Study Hours:	114						
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	36						
	Total Scheduled Learning and Teaching Hours:	6						
	Hours to be allocated	150						
		-						
	Allocated Hours	150						
Reading List	The reading list for this module can be accessed via the following link:							
	111ps.//uwe.n.taiis.com/mouules/uifiivi-15-11.fttiii							

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering [Sep][PT][Frenchay][2yrs] MSc 2018-19