
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Programming in C++

Module Code UFCFGL-30-1 Level Level 4

For implementation
from

2019-20

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Module type:

Standard

Pre-requisites

None

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Introduction to computer programming

Systems programming, differences between languages like Java/Javascript and C/C++

C:
Data types
Iteration (for and while)
Selection (if and switch)
Functions
Structs
Boolean logic and bit fields
Pointers and memory management
Linked lists, stacks, and queues (in C style)

C++:
Introduction to object-oriented programming
Classes, objects, and data-encapsulation
Linked lists, stacks, and queues (in C++ style)
Function objects and Anonymous functions

STUDENT AND ACADEMIC SERVICES

2

Generic programming (templates)
Generic linked list
Object-oriented design, introduction to UML
Testing and debugging
Open Source software---examples, licenses, and ethics

Teaching and Learning Methods: Laboratory exercises will allow the student to gain
familiarization with the tools and techniques required for the implementation and verification of
systems built with C++.

Students will be expected to demonstrate self-direction and originality in their learning which will
be facilitated through student directed tutorials.

Scheduled learning: in the form of lectures, tutorials, demonstrations and practical classes will
comprise 1/3 of the total study time for this module.

Independent learning: will constitute the remaining study time with an expectation that
approximately 92 hours will be spent on self-directed study, a further 80 hours in support of the
coursework and 32 hours preparation for the presentation.

Contact time: 72 hours
Assimilation and skill development: 140 hours
Undertaking coursework: 88 hours
Total: 300 hours

Part 3: Assessment

Summative assessment is achieved through the demonstration of an innovative solution to a design problem,
which will be a program implementation, design (e.g. UML), and testing, along with submission of a log book,
which is between 1500 and 2000 words.

Formative assessment will be provided as oral feedback throughout the laboratory sessions particularly with
respect to the design development and the log-book entries.

Final summative assessment will be by oral presentation of the software implemented, reflecting back to the log
book.

Students will also be assessed in their effective use of the test and verification tools, the quality of their program
design and documentation.

The resit assessment will similarly take the form of a presentation, logbook and demonstration of the final product.
However in this situation, the presentation will be a video presentation, and the demonstration of the final product
will also be via video.

First Sit Components Final
Assessment

Element
weighting

Description

 Set Exercise - Component B
✓ 50 % Logbook and demonstration of final product

 Presentation - Component
A

 50 %
Oral Presentation

Resit Components Final
Assessment

Element
weighting

Description

 Set Exercise - Component B
✓ 50 % Logbook and demonstration of final product

 Presentation - Component
A

 50 %
Video presentation

STUDENT AND ACADEMIC SERVICES

3

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will achieve the following learning outcomes:

Module Learning Outcomes Reference

Understand the foundations of system programming, discuss the difference
between managed languages such as Java/Javascript and non-managed
languages such as C/C++

MO1

Understand and use the basic programming constructs of C/C++ MO2

Manipulate various C/C++ datatypes, such as arrays, strings, and pointers MO3

Isolate and fix common errors in C++ programs MO4

Use memory appropriately, including proper allocation/deallocation procedures MO5

Apply object-oriented approaches to software problems in C++ MO6

Write small-scale C++ programs using the skills developed during the course MO7

Develop and use test plans MO8

Understand and put into practice basic source control management, for example
Git.

MO9

Discuss and consider the ethical issues around open source software, considering
its advantages and disadvantages.

MO10

Discuss and apply trustworthy and secure software development. MO11

Contact
Hours

Independent Study Hours:

Independent study/self-guided study 204

Total Independent Study Hours: 204

Scheduled Learning and Teaching Hours:

Face-to-face learning 96

Total Scheduled Learning and Teaching Hours: 96

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/modules/ufcfgl-30-1.html

STUDENT AND ACADEMIC SERVICES

4

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Forensic Computing and Security {Foundation} [Sep][SW][Frenchay][5yrs] BSc (Hons) 2018-19

Forensic Computing and Security {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2018-19

