

MODULE SPECIFICATION

Part 1: Information							
Module Title	Thermal Performance						
Module Code	UBLMJ8-15-M		Level	Level 7			
For implementation from	2019-20						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Architecture and the Built Environment			
Department	FET I	Dept of Architecture & Built Environ					
Module type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		Introduction to Facade Systems 2019-20					
Module Entry requirements		None					

Part 2: Description

Overview: Co- requisites: students must have already completed or be currently enrolled in UBLLYS-15-M Introduction to Façade Systems. This requirement is compulsory for FT and PT students. Advisory for CPD students who only intend to take an individual module.

Educational Aims: To understand building physics in relation to heat loss through the façade, and the risk of condensation.

Outline Syllabus: Many countries around the world have set tough, legally binding targets to reduce their carbon dioxide emissions significantly when compared to historical values. In response to this the regulations concerning energy use in buildings are being ever tightened.

The unit starts by introducing the different forms of heat transfer and how they relate to facades. These ideas are further developed to consider how different components and elements may be analysed and assessed.

Thermal bridging can be a significant impairment to the overall thermal performance of a façade. This unit will look at how and why thermal bridges occur, their effects, how they can be minimised and how they can be quantified.

Condensation can, in addition to being unsightly, cause material degradation, reduction in

STUDENT AND ACADEMIC SERVICES

thermal insulation and result in mould which can be harmful to people. Condensation theory and principles are introduced, together with condensation risk analysis.

Teaching and Learning Methods: The module is delivered by way of five study days for face to face teaching.

The module will be delivered by means of a series of lectures, seminars and tutorials.

Lectures and seminars will be used to enable students to support their own independent learning by exploring deeper issues pertaining to Façade Engineering and receiving formative feedback. Occasional speakers will be used to provide up to date material and context to the applications of the subject area.

A series of tutorials are designed to provide knowledge and practical skills relevant to façade engineering.

Group work and Presentations by and to the group by the students will also be used to enable students to develop the skills and capabilities to analyse problems, negotiate, make decisions and present solutions to problems.

Directed reading examining the key principles and relevant criteria relating to a number of topics of importance to façade Engineering.

Part 3: Assessment

Component A will be assessed via a video presentation of a condensation risk assessment.

Component B is assessed via a Case Study Calculation, based on a real world practical activity which a professional Façade Engineer would need to undertake, modelled around a realistic situation.

Resit strategy will consist on working through a similar form of assessment, so that the students can improve according to the feedback received.

First Sit Components	Final Assessment	Element weighting	Description
Presentation - Component A		50 %	Video Presentation on Risk Assessment (5-7 mins)
Case Study - Component B	~	50 %	Case study: calculations
Resit Components	Final Assessment	Element weighting	Description
Presentation - Component A		50 %	Video presentation (7-10 mins)
Case Study - Component B	\checkmark	50 %	Case study: Calculations

Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning o	outcomes:				
	Module Learning Outcomes						
	Identify energy flows into and out of building envelopes and evaluate appropriate methods of calculation						
	Critically evaluate the benefits of controlled air leakage through building envelopes						
	Critically evaluate the impact of thermal bridges on façade thermal integrity and building envelope performance Critically evaluate building envelopes with component and whole building environmental rating schemes						
	Assess condensation risk and its effects on building envelope perform	nance	MO5				
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study 11						
	Total Independent Study Hours: 11 Scheduled Learning and Teaching Hours:						
	Face-to-face learning	32	32				
	Total Scheduled Learning and Teaching Hours:	3.	32				
	Hours to be allocated	15	150				
	Allocated Hours	150					
Reading List	The reading list for this module can be accessed via the following link:						
	https://uwe.rl.talis.com/modules/ublmj8-15-m.html						

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study: