

MODULE SPECIFICATION

Part 1: Information							
Module Title	Vibra	Vibrational Dynamics					
Module Code	UFMFXJ-15-3		Level	Level 6			
For implementation from	2020-21						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET I	Dept of Engin Design & Mathematics					
Module type:	Stand	Standard					
Pre-requisites		Dynamics 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Review of single free, forced, damped and undamped Single DOF systems

Response to certain non-periodic forcing functions Response to periodic forcing functions Review of unforced multi-degree-of-freedom systems Analysis of forced multi-degree-of-freedom using modal analysis Analysis of non-linear systems using energy methods Introduction to random vibration

Teaching and Learning Methods: Large group teaching session supported by small group tutorial sessions. Study time outside of contact hours will be spent on going through new material (via notes and videos), exercises and example problems. The learning on the module is strongly supported by the use of technology and students are encouraged to engage in this material both prior to and after class contact sessions.

Scheduled learning includes teaching sessions and tutorials.

STUDENT AND ACADEMIC SERVICES

Independent learning includes hours engaged with essential reading and assessment preparation. These sessions constitute an average time per level as indicated in the table below. Scheduled sessions may vary slightly depending on the module choices you make.

Student contact time: 36 hours Directed learning: 48 hours Self-directed learning: 42 hours Exam preparation: 67 hours TOTAL: 150 Hours

Part 3: Assessment

Component A

The interactive style of delivery leads to students receiving frequent formative feedback on their progress and hence students should be well prepared for the end of module assessment which takes the form of a written examination. E-quizzes taken in each week are an additional means of ensuring engagement in delivery.

First Sit Components	Final Assessment	Element weighting	Description	
Examination (Online) - Component A	✓	80 %	End of semester online examination	
In-class test - Component B		20 %	E-quizzes	
Resit Components	Final Assessment	Element weighting	Description	
Examination (Online) - Component A	~	80 %	Online Examination	
In-class test - Component B		20 %	E-quizzes	

Part 4: Teaching and Learning Methods				
Learning Outcomes	On successful completion of this module students will achieve the following learning of	outcomes:		
	Module Learning Outcomes	Reference		
	Demonstrate knowledge of scientific principles and methods necessary to underpin their education in mechanical and related engineering disciplines, to enable appreciation of its scientific and engineering context and to support their understanding of future developments and technologies.	MO1		
	Demonstrate knowledge of mathematical principles necessary to underpin their education in mechanical and related engineering disciplines and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems.	MO2		
	Apply and integrate knowledge of other engineering disciplines to support the study of mechanical and related engineering disciplines	MO3		
	Use engineering principles and apply them to analyse key engineering processes.	MO4		
	Identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques	MO5		
	Apply quantitative methods to mechanical and related engineering disciplines, to solve engineering problems	MO6		
	Demonstrate an ability to apply a systems approach to engineering problems	MO7		

Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	114				
	Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	36				
	Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocated	150				
	Allocated Hours	150				
Reading List	The reading list for this module can be accessed via the following link:					
	https://uwe.rl.talis.com/modules/ufmfxj-15-3.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Automotive Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Automotive Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19

Mechanical Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Mechanical Engineering [Sep][FT][Frenchay][3yrs] BEng 2018-19