

MODULE SPECIFICATION

Part 1: Information						
Module Title	Power Systems Fundamentals					
Module Code	UFMFRJ-15-2		Level	Level 5		
For implementation from	2019-	20				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET Dept of Engin Design & Mathematics					
Module type:	Standard					
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: In addition to the learning outcomes the educational experience may develop through practise but not formally assess the handling of simulation software such as PSCAD, ATPDraw and MATLAB.

Outline Syllabus: The syllabus includes:

History of power systems and symbols used to represent each element.

Structure of modern power systems and their respective ratings.

Per unit systems -single and three phase systems.

One-line diagram representation of power systems elements and components.

Conversion of a network impedance diagram into per unit diagram.

Model of transmission lines/cables, transformers, generators, and loads.

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: Concepts and the scope of a topic will be introduced in lectures. These will be supported by tutorials, directed reading and laboratory based work.

Tutorial exercises will provide students confidence in applying the concepts and analysing a simple power network. The lab sessions will enhance understanding of realworld applications of the material delivered in the module. The students will learn through applying a variety of analysis methods and mathematical tools to the electrical networks.

Relevant ethical issues will be highlighted and students will be encouraged to consider these further through directed reading.

In addition to 36 hours of scheduled contact, students will be expected to spend (typically) 114 hours in independent study, preparation for classes, assimilation of knowledge and skills development and completion of assessments.

Scheduled learning includes lectures, tutorials and workshops.

Independent learning includes hours engaged with essential reading, assignment preparation and completion, etc. These sessions constitute an average time per level.

Contact Hours:

Scheduled contact = 36 hours

Scheduled contact will take the form of lectures, problems classes and workshops

Part 3: Assessment

The assessment consists of an end of module examination and an assignment.

The strategy has been chosen to ensure that fundamental engineering principles are assessed under controlled conditions, while a more open ended research based assignment is used to encourage wider engagement and reflection on this topic.

The assignment is develops understanding of the design of power systems and their applications. Starting with various design scenarios involving different applications, students are required to analyse, simulate and reflect on these designs and propose ideas for improvements. The assignment therefore develops subject knowledge as well as subject skills such as critical evaluation.

First Sit Components	Final Assessment	Element weighting	Description			
Report - Component B		50 %	Report			
Examination - Component A	√	50 %	Examination (3 hours)			
Resit Components	Final Assessment	Element weighting	Description			
Report - Component B		50 %	Report			
Examination - Component A	✓	50 %	Examination (3 hours)			

	Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes		Reference			
	Demonstrate power systems history and symbols used to represent velements	rarious	MO1			
	Understand global structure of power systems		MO2			
	Gain knowledge of power systems components and their respective r	atings	MO3			
	Describe a network impedance diagram into per unit diagram		MO4			
	Implement power injection concept to networks with respect to the ch voltage magnitude and phase angle	anges in	MO5			
	Design and model transmission lines (short, medium and long), cable transformers, generators, and loads	?S,	MO6			
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	1	114			
	Total Independent Study Hours:	14				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	3	36			
	Total Scheduled Learning and Teaching Hours:		36			
	Hours to be allocated	150				
	Allocated Hours	150				
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html					

Part 5:	Contributes To	owards
---------	-----------------------	--------

This module contributes towards the following programmes of study:

Electrical and Electronic Engineering [Sep][SW][Northshore][5yrs] MEng 2018-19

Electrical and Electronic Engineering [Sep][SW][Frenchay][5yrs] MEng 2018-19