

MODULE SPECIFICATION

Part 1: Information							
Module Title	Foundation Mechanics						
Module Code	UFMFAG-30-0		Level	Level 3			
For implementation from	2019-	20					
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [T Dept of Engin Design & Mathematics					
Module type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: See Learning Outcomes.

Outline Syllabus: Triangles: Pythagoras' Theorem; Trigonometric Ratios; Cosine and sine rule; Trigonometry, Graphs and Waveforms; Trigonometrical Identities and other special relationships.

Fundamental Units, Vectors and Scalars. Vectorial Representation and force components.

Static Equilibrium: Newton's 1st and 3rd Laws, force, weight, resultant component. Moments, equilibrium, Centre of gravity, Centre of area. Free body diagrams. Stress and strain - shear, direct stress, basic definitions. Basic stress analysis.

Dry Friction: Limiting friction; Body at rest on an inclined plane; Impending motion up and down an incline.

Rigid Body Motion: Linear motion, displacement, velocity, acceleration, falling bodies, projectiles, relative velocity, application of Newton's 2nd Law. Work done, power and Conservation of Energy.

Angular Motion: Radians, angular velocity and accelerations. Centripetal and centrifugal

acceleration.

Behaviour of Fluids: Fluid properties - pressure, temperature, density. Pressure and pressure measurement. Incompressible Fluid Flow. Volume flow rate and mass flow rate. Continuity Equation. Branched Pipes.

Teaching and Learning Methods: Scheduled teaching and learning includes lectures and tutorial sessions. Demonstrations and practical experiments will be given within the taught sessions and worked examples, class examples and multiple tutorial questions used to clarify and compound understanding.

Independent learning includes hours engaged in problem solving and preparation of tutorial questions and assignment preparation.

Part 3: Assessment

Component A, a two hour end of module examination has been chosen to test the understanding and knowledge of the fundamentals of mechanics under controlled conditions.

Component B assessment is made up of a written assignment and two e-assessment (DEWIS) tests. These have been chosen to ensure students can solve problems in static and dynamic engineering situations, display cognitive skills with respect to simplifying real problems and apply mathematical methods of analysis.

First Sit Components	Final Assessment	Element weighting	Description
Written Assignment - Component B		30 %	Mechanics assignment
In-class test - Component B		10 %	E-assessment test 1
In-class test - Component B		10 %	E-assessment test 2
Examination - Component A	✓	50 %	Examination (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Written Assignment -			Mechanics Assignment
Component B		50 %	(No set word length as mechanics based mathematical problems)
Examination - Component A	✓	50 %	Examination (2 hours)

Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:				
	Module Learning Outcomes						
	Show an awareness of the basic properties of materials and simple stress analysis						
	Show a basic understanding of mechanical principles		MO2				
	Apply mechanical principles to solve problems in static and dynamic engineerin situations						
	Show cognitive skills with respect to simplifying real problems and ap mathematical methods of analysis	blems and applying					
	Apply the principles of Equilibrium, Motion and Conservation of Energy Conservation of Mass to solve practical problems	gy and	MO5				
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study 2						
	Total Independent Study Hours: 22						
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	72					
	Total Scheduled Learning and Teaching Hours:	72					
	Hours to be allocated	30	300				
	Allocated Hours	30	300				
Reading List	The reading list for this module can be accessed via the following link:						
	https://uwe.rl.talis.com/modules/ufmfag-30-0.html						

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study: