

MODULE SPECIFICATION

Part 1: Information								
Module Title	Foundation Mathematical Structures							
Module Code	UFMFFG-15-0		Level	Level 3				
For implementation from	2020-21							
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET [Dept of Engin Design & Mathematics						
Module type:	Stand	Standard						
Pre-requisites		None						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Educational Aims: See Learning Outcomes.

Outline Syllabus: Logic: Propositional and predicate logic. Logical equivalence and logical implication. Validity of arguments and proof by natural deduction.

Sets, Functions and Relations:

Introduction to sets, functions and relations and their applications

Set operations: e.g. union, complement, Cartesian product, power-sets.

Cardinality of sets.

Composition of functions. Injective, surjective, bijective functions. Inverse functions.

Some real-valued functions and their properties – e.g. powers, logarithms, radix conversions.

Composition of relations. Relations on a set. Reflexive, symmetric, transitive relations. Representation by matrices.

Modelling sets, functions and relations by visual representations.

Counting: Sum rule, product rule, principle of inclusion-exclusion, binomial coefficient. Graph Theory:

Introduction to Graph Theory and its applications as a modelling tool, including simple and directed graphs. Counting walks of given length. Isomorphic graphs. Representation by matrices.

Teaching and Learning Methods: Contact Hours:

Contact: 36 Assimilation and skill development :54 Coursework:15 Exam preparation: 45

Total: 150

Part 3: Assessment

Component A: an end of module online examination has been chosen to test the understanding and knowledge of the fundamentals of discrete mathematical structures.

Component B assessment: e-Assessments.

E-assessments will be used to allow students to gauge their progress by receiving immediate feedback.

One e-assessment will be based on directed reading to encourage independent learning. The second e-assessment is aimed at reinforcing the module content, partially in preparation for the examination.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	75 %	Online Examination
Online Assignment - Component B		25 %	E-assessment
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	75 %	Online Examination
Online Assignment - Component B		25 %	E-Assessment

Learning Outcomes	On successful completion of this module students will achieve the follo	owing learning o	outcomes:				
	Module Learning Outcomes Communicate mathematical concepts using the language of discrete mathematics						
	Solve problems in the application of predicate and propositional logic		MO2				
	Define and manipulate sets using standard operations						
	Determine key properties of simple functions and relations and perform binary and unary operations on these data structures.						
	Implement basic counting techniques such as the product rule and the binomial coefficient						
	Solve simple problems in the application of graph theory						
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study	11	114				
	Total Independent Study Hours: 12						
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	36					
	Total Scheduled Learning and Teaching Hours:	36					
	Hours to be allocated 15						
	Allocated Hours	150					
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmffg-15-0.html						

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mathematics with Qualified Teacher Status (QTS) {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2020-21