

MODULE SPECIFICATION

Part 1: Information							
Module Title	Mathematics for Civil and Environmental Engineering						
Module Code	UFMFYG-15-1		Level	Level 4			
For implementation from	2019-20						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [ET Dept of Engin Design & Mathematics					
Module type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: In this module students will study standard mathematical techniques used in the solution of engineering problems.

Educational Aims: See Learning Outcomes

Outline Syllabus: Algebraic Manipulation and Standard engineering functions: Dimensions, polynomials, rational functions, exponential and logarithmic functions, trigonometric and hyperbolic functions, the inverse function, solving non-linear equations.

Matrix and Vector Algebra: Properties of matrices and determinants, the inverse matrix, Gaussian elimination. Vector and scalar quantities, resolution of forces, properties of vector quantities, vector addition, unit vectors, position vectors, scalar product, vector product.

Differential and Integral Calculus: Limits, average rate and instantaneous rate of change, differentiation, linearity, product rule, quotient rule and chain rule. Higher order derivatives, classification of turning points. Integration, indefinite and definite integration, integration by parts, numerical integration. First order differential equations, separation of variables.

Teaching and Learning Methods: Scheduled learning includes lectures and workshops with tutorial sessions.

STUDENT AND ACADEMIC SERVICES

Independent learning includes hours engaged in problem solving and preparation of tutorial questions.

Contact time: 36 hours

Assimilation and skill development: 54 hours

Coursework: 15 hours Exam preparation: 45 hours

Total: 150 hours

Part 3: Assessment

Component A, a two hour end of module examination has been chosen to test the understanding and knowledge of functions, calculus and linear algebra techniques under controlled conditions.

Component B, uses an e-assessment strategy to provide regular and rapid feedback to help students consolidate their knowledge as the module progresses.

First Sit Components	Final Assessment	Element weighting	Description			
Online Assignment - Component B		25 %	E-assessment			
Examination - Component A	✓	75 %	Examination (2 hours)			
Resit Components	Final Assessment	Element weighting	Description			
Online Assignment - Component B		25 %	E-assessment			
Examination - Component A	✓	75 %	Examination (2 hours)			

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes		Reference				
	Select and apply appropriate techniques from calculus to the solution problem	of a given	MO1				
	Select and apply appropriate techniques from linear algebra to the so given problem	lution of a	MO2				
	Interpret a mathematical model in terms of the physical problem being with reference to the underlying assumptions and limitations of the model.	MO3					
	Use appropriate notation and terminology to communicate mathemat		MO4				
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study	114					
	Total Independent Study Hours:	11	4				
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	3	36				
	Total Scheduled Learning and Teaching Hours: 3		6				
	Hours to be allocated	150					
	Allocated Hours	ours 1					
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfyg-15-1.html						

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Civil and Environmental Engineering {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19
Architecture and Environmental Engineering {Foundation} [Sep][SW][Frenchay][6yrs] BEng (Hons) 2018-19
Architecture and Environmental Engineering {Foundation} [Sep][FT][Frenchay][5yrs] BEng (Hons) 2018-19
Civil and Environmental Engineering [Sep][PT][Frenchay][7yrs] MEng 2018-19
Civil and Environmental Engineering {Apprenticeship} [Sep][PT][Frenchay][5yrs] BEng (Hons) 2018-19
Civil and Environmental Engineering [Sep][PT][Frenchay][5yrs] BEng (Hons) 2018-19
Civil and Environmental Engineering {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19