

MODULE SPECIFICATION

Part 1: Information							
Module Title	Introduction to Aeronautics						
Module Code	UFMFDH-15-1		Level	Level 4			
For implementation from	2019-	2019-20					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [FET Dept of Engin Design & Mathematics					
Module type:	Standard						
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: This module aims to provide an introduction to the degree topic. Other level 1 modules provide a more general set of fundamental engineering modules which are vital to a student attaining a firm basis in the discipline.

This module is designed to provide a solid foundation of knowledge, with practical exercises to reinforce which will be used to extend specialist knowledge in future years.

Educational Aims: See Learning Outcomes.

Outline Syllabus: Introduction to fluid dynamics, pressure, density, hydrostatic pressure

Volumetric and mass flow rates, continuity and Bernoulli's equation

Flow measurement devices and calculations

Dimensional analysis for engineering problems

Flow types: laminar and turbulent flow, characteristics including solving basic problems

Introduction to aircraft familiarisation

Introduction to basic aerodynamics.

Use of the university subsonic windtunnel and the flight simulator

Wing design for a model aircraft and basic performance and balance calculations

Teaching and Learning Methods: Large group lecture supported by small group tutorial sessions. Study time outside of contact hours will be spent on going through example problems and designing/testing and manufacturing the model aircraft.

Lab sessions (small groups) will provide experience of the use of the flight simulator and the windtunnel.

Scheduled learning includes lectures, tutorials and laboratory session

Independent learning includes hours engaged with essential reading, assignment preparation and completion etc

Approximate contact hours: Lecture 24 Tutorial 12 Laboratory 4

Part 3: Assessment

Component A:

Assessed via end of semester Exam of 2 hours (50%) in which LO1,LO2,LO4 and LO6 are covered through the specific exam questions.

Formative assessments (not contributing to module mark) is provided via support in tutorial sessions.

Component B:

Report on the model aircraft assignment in the form of a group presentation of 30 mins held during term time.(50%). In this assignment it is required that use of the subsonic windtunnel is made by the student group (LO3). The presentation will cover aspects of wing design, aerodynamic modelling and aeroplane balance (LO5, LO6, LO7).

Formative assessments provided via support in tutorial sessions.

	1		
First Sit Components	Final Assessment	Element weighting	Description
Presentation - Component			Model aircraft design and build project (Group
В		50 %	presentation 30 mins.)
Examination - Component A	✓	50 %	End of semester exam (2 hours)
Resit Components	Final Assessment	Element	Description
	ASSESSMEIL	weighting	
Presentation - Component B	A3363511611	50 %	Model aircraft design and build project (presentation 30 mins.)

Learning Outcomes	On successful completion of this module students will achieve the follow	wing learning o	outcomes:					
	Module Learning Outcomes							
	Show a detailed knowledge and understanding of key principles in fluid dynamics and aerodynamics analysis							
	Demonstrate a basic understanding and knowledge of modelling and solving numerical problems in fluid dynamics, based on knowledge of the relevant engineering principles							
	Demonstrate the ability to use specific aerospace equipment such as the subsonic windtunnel and the flight simulator							
	Understand the basics of aircraft composition							
	Show an understanding of basic model aircraft flying requirements, specifically the basics of wing design, and the balance of the model aircraft in flight							
	Show cognitive skills with respect to modelling and simplifying real problems, and applying mathematical methods of analysis							
	Demonstrate key transferable skills in problem formulation and decision making, interpreting experimental results							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study 110							
	Total Independent Study Hours: 11							
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning 40							
	Total Scheduled Learning and Teaching Hours: 40							
	Hours to be allocated 15							
	Allocated Hours 150							
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfdh-15-1.html							

Part 4: Teaching and Learning Methods

STUDENT AND ACADEMIC SERVICES

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Aerospace Engineering (Design) {Apprenticeship} [Sep][PT][UCW][4yrs] BEng (Hons) 2019-20 Aerospace Engineering [Sep][PT][UCW][8yrs] MEng 2018-19 Aerospace Engineering (Design) [Sep][PT][Frenchay][8yrs] MEng 2018-19 Aerospace Engineering (Manufacturing) [Sep][PT][Frenchay][8yrs] MEng 2018-19 Aerospace Engineering (Manufacturing) [Sep][PT][Frenchay][8yrs] MEng 2018-19 Aerospace Engineering (Systems) [Sep][PT][Frenchay][8yrs] MEng 2018-19 Aerospace Engineering (Foundation} [Sep][PT][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Design) {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Design) {Foundation} [Sep][FT][Frenchay][5yrs] BEng (Hons) 2018-19 Aerospace Engineering (Manufacturing) {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19 Aerospace Engineering (Manufacturing) {Foundation} [Sep][FT][Frenchay][5yrs] BEng (Hons) 2018-19