

MODULE SPECIFICATION

Part 1: Information								
Module Title	Spaceflight							
Module Code	UFMFCH-15-3		Level	Level 6				
For implementation from	2018-19							
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty		ty of Environment & nology	Field	Engineering, Design and Mathematics				
Department	FET Dept of Engin Design & Mathematics							
Contributes towards								
Module type:	Standard							
Pre-requisites		Aerodynamics and Flight 2018-19						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: The module covers theoretical and practical aspects of spaceflight, and of dynamic flight stability and flight test.

Educational Aims: See Learning Outcomes.

Outline Syllabus: This module will cover:

Supersonic flow: finite strength wave formation; wave patterns; shock-expansion theory; supersonic coefficient definitions, linearised theory, normal and oblique shocks, ducts and in-takes.

Use of the supersonic windtunnel for external aerodynamics.

Hypersonic Flow: Qualitative Aspects, Newtonian Theory.

STUDENT AND ACADEMIC SERVICES

Space: Atmospheric Drag, Satellite Orbit Transfers, re-entry conditions, space environment.

Space: propulsion types, nozzle design, rocket staging.

Considerations for spacecraft design, launch, and operation.

Equations of motion of an aircraft: solutions in longitudinal and lateral degrees of freedom.

Longitudinal dynamic stability: phugoid and short period oscillation; mathematical description of each mode; magnitude and effects of damping; contribution(s) of aircraft layout.

Lateral dynamic stability: spiral dive, Dutch roll, Roll subsidence; mathematical description of each mode; magnitude and effects of damping; contribution(s) of aircraft layout.

Response Transfer Functions, Flight Control System.

Weight and balance; in-flight measurements; post-flight calculations; comparison with theory; trends from multiple flights and tests.

Teaching and Learning Methods: See Outline Syllabus and Assessment.

Part 3: Assessment

Component A is a two hour examination that will test understanding of learning outcomes relating to spaceflight for evaluating theory and spacecraft design principles.

Component B ensures that students are able to demonstrate their understanding of underpinning principles within a practical or simulated practical environment where a portfolio of practical skills are assessed for flight stability and flight testing.

First Sit Components	Final Assessment	Element weighting	Description			
Practical Skills Assessment -		50 %	Assignment in flight testing			
Component B		50 %				
Examination - Component A	~	50 %	Examination (2 hrs)			
Resit Components	Final Assessment	Element weighting	Description			
Practical Skills Assessment -		50 %	Assignment in flight testing			
Component B		50 %				

	Part 4: T	eaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will be able to:						
	Module Learning Outcomes						
	MO1 Use numerical models to produce simulations of both aircraft a spacecraft motion						
	MO2	esign principles and theory					
	MO3 Appreciate the issues in designing and assembling a spacecra including issues on relevant systems, communications and navigation						
	MO4 Operate a flight simulation package and use it to assess an aeroplane's stability						
	MO5	Learn to flight test an aircraft					
	MO6 Demonstrate key transferable skills in problem formulation and decision making, self-management and communication						
Contact Hours	Contact Hours						
	Independent Study Hours: Independent study/self-guided study 114						
		Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	36					
	Total Sche	36					
	Hours to be allocated		150				
	Allocated Hours		150				
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfch-15-3.html						

3