
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Low-Level Programming for Games

Module Code UFCFXG-30-2 Level Level 5

For implementation
from

2019-20

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Module type:

Standard

Pre-requisites

Entertainment Software Development 2019-20

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: The syllabus includes:

C++ language features:

Rationale for using C++ in Games Development

Memory allocation / deallocation

Object orientation: inheritance and polymorphism

Templates

Operator overloading

Delegate functions

STUDENT AND ACADEMIC SERVICES

2

Function Pointers (functors)

Software development using C++ for non-trivial projects:

Runtime behaviour / call-stack behaviour

Compiler directions and representation of language features

“Advanced” debugging facilities (dump files, expressions, exception handling, memory
examination and tracing)

Practical considerations – APIs, IDEs, libraries and SDKs
API / SDK evaluation

Plug-ins / interfacing with existing applications

Unmanaged code:

Automatic vs dynamic memory handling

Measuring and analysing performance

Memory alignment, bit manipulation, packing, pooling

Custom memory management

Threading and networking:

Threading: Concepts, libraries and implementation approaches

Networking: Concepts, libraries and implementation approaches

Data Structures:

Standard Template Library and its implementation of such structures

Implementation of standard data structures
Linked lists, vector, stack, etc.

The use of Design Patterns within C++, origins and implementation specifics of particular interest
to games development.

Efficiency:

Big-O notation and limitations of its analysis

Teaching and Learning Methods: Contact Hours: 3 hours of Lectorials per week.

Lectorials will blend the introduction of relevant programming concepts with practical exploration
guided by worksheets.

It is expected that a significant proportion of the worksheet and portfolio tasks will be carried out
during the extended Lectorial sessions. Under observation and with discussion with the module
team. This will thus form the controlled conditions for the assessment.

A subset of the worksheet tasks will build to be components of a small number of more
challenging portfolio tasks to implement taught concepts. These will use supplied designs / code /

STUDENT AND ACADEMIC SERVICES

3

libraries / SDKs / APIs where appropriate. Any base code will be provided via a read only code
repository.

It is expected that both worksheet and portfolio tasks will involve working in small groups (2-4
students) to reflect the often communal nature of games development. Whilst the portfolio tasks
will be largely carried out in students’ own time, taught sessions will provide a space for progress
discussions and portfolio help where appropriate.

Part 3: Assessment

Formative assessment:
Worksheet tasks set for the module will be subject to extended in session peer and tutor-led discussion.

Completed tasks will contribute to the more involved portfolio tasks.

Summative assessment:
In addition to worksheet tasks, a small number of more challenging portfolio tasks will be set across the teaching
year, to be completed individually or in small groups. These will be summative, though some formative feedback
on early work will be available through discussion in taught sessions.

Each task will have a research element, with the expectation students will explore multiple techniques to complete
the task and explain their choice of methodology.

The reason behind this strategy is to expose students to the production of code as a group activity (the principal
method of games development), to align assessed tasks with the topics being taught, and distribute workload for
the module across the year.

An individual logbook will detail student contributions to, and reflection on, each of the portfolio tasks.

Combined Formative and Summative Assessment:
It is expected that a significant proportion of the worksheet and portfolio tasks will be carried out during the
extended Lectorial sessions. Under observation and with discussion with the module team. This will thus form the
controlled conditions for the assessment.

Furthermore, assessment will also be in part via presentation of the code produced.

First Sit Components Final
Assessment

Element
weighting

Description

 Reflective Piece -
Component A

 25 %
Individual Logbook

 Portfolio - Component A
✓ 75 % Portfolio of Practical Tasks

Resit Components Final
Assessment

Element
weighting

Description

 Reflective Piece -
Component A

 25 %
Individual Logbook

 Portfolio - Component A
✓ 75 % Portfolio of practical tasks

STUDENT AND ACADEMIC SERVICES

4

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will achieve the following learning outcomes:

Module Learning Outcomes Reference

Demonstrate implementations of standard data structures commonly used in
games development, as well as an understanding of their implementation within
the STL.

MO1

Implement simple threaded and networked applications that avoid typical race /
synchronisation issues.

MO2

In relationship to the wider use of C++ and their role in cross-platform games
development; outline the role and significance of external libraries, Application
Programme Interfaces (APIs) and Software Development Kits (SDKs).

MO3

Recognise issues related to efficiency and organisation of memory resources
within unmanaged code and apply strategies to reduce their impact on run-time
performance.

MO4

Apply this understanding of memory management issues within C++, to develop
object oriented applications which avoid issues such as memory leaks, pointer
errors and undefined behaviour. Up to and including the production of custom
memory management systems, instancing etc.

MO5

Design and implement object orientated applications that make appropriate use of
mechanisms such as polymorphism, templates and delegate functions.

MO6

Analyse the impact of using various C++ language features on the compilation
process and run-time behaviour of non-trivial games development projects.

MO7

Act as a reflective practitioner. MO8

Contact
Hours

Independent Study Hours:

Independent study/self-guided study 148

Total Independent Study Hours: 148

Scheduled Learning and Teaching Hours:

Face-to-face learning 72

Project work (individual or group) 80

Total Scheduled Learning and Teaching Hours: 152

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/modules/ufcfxg-30-2.html

STUDENT AND ACADEMIC SERVICES

5

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Games Technology [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

Games Technology [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

