

MODULE SPECIFICATION

Part 1: Information						
Module Title	Fluid Dynamics					
Module Code	UFMFVG-15-3		Level	Level 6		
For implementation from	2020-	21				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engin Design & Mathematics				
Module type:	Stand	Standard				
Pre-requisites		Mathematical Methods 2020-21				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: In this module you will study the linear algebra and multivariate calculus techniques that underpin the field of fluid dynamics. The techniques covered have applications in meteorology and in the design of aerodynamic structures such as aircraft wings and wind turbines.

Educational Aims: In this module you will extend your knowledge of vector calculus and apply it to problems of three dimensional flow.

Outline Syllabus: Particle paths, streamlines. Rate of change following the fluid. Mass conservation and incompressibility. Pressure forces. Euler equations and their derivation. Vorticity: rotational and irrotational flow. Bernoulli theorems. Simple potential flows.

Simple viscous flows. No-slip boundary conditions. Derivation of the governing equation for viscous unsteady flow. The Navier-Stokes equations for incompressible flow. The Reynolds number and its interpretation. Exact solutions of the Navier-Stokes equations: Couette and Poiseuille flow, unsteady flows.

Linear water wave theory.

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: Scheduled contact includes lectures and workshops. The latter serve partly to resolve issues brought up by the students on a week-by-week basis, and also to provide an arena for other learning activities appropriate to developing theory or to exploring applications.

Self-study includes: engaging with the resources provided; working on example sheets; locating and utilising other materials to support learning.

Contact: 36 hours

Assimilation and skill development: 54 hours

In-class tests preparation:15 hours

Exam preparation: 45 hours

Total: 150 hours

Part 3: Assessment

The assessment strategy uses an online end-of-module examination that will test the ability to bring together concepts and techniques from the whole module and select appropriate solution techniques to the solution of mathematical problems that arise in fluid flow problems with interpretation of the results.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	✓	100 %	Online Examination
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	✓	100 %	Online Examination

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:			
	Module Learning Outcomes		Reference			
	To demonstrate an understanding of the mathematical aspects of fluid dynamics					
	Find solutions of the Navier-Stokes equations in simple geometries MG					
	Use mathematical techniques to model problems arising in fluid dynamics					
	Communicate mathematical concepts, analysis and results through a report	short written	MO4			
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	11	L4			
	Total Independent Study Hours:	11	14			
	Scheduled Learning and Teaching Hours:					

STUDENT AND ACADEMIC SERVICES

	Face-to-face learning	36	
	Total Scheduled Learning and Teaching Hours:	36	
	Hours to be allocated	150	
	Allocated Hours	150	
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfvg-15-3.html		

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mathematics and Statistics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Mathematics [Sep][FT][Frenchay][4yrs] MMath 2018-19

Statistics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Mathematics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19