

MODULE SPECIFICATION

Part 1: Information							
Module Title	Financial Mathematics						
Module Code	UFMFUG-15-3		Level	Level 6			
For implementation from	2020-	21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stanc	andard					
Pre-requisites		Mathematical Methods 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: In this module you will study the mathematical concepts that underpin financial trading with derivative contracts that are an important element of modern investment strategies. The topic of stochastic calculus has important applications in finance, but is also used to model problems that occur in biology and the physical world.

Educational Aims: In this module you will extend your knowledge of calculus to situations involving random variables.

Outline Syllabus: Financial concepts: Risk-free and risky assets, the stock market, interpreting financial information.

Derivative contracts: Forward and futures contracts, European and American style options, path dependent options, arbitrage, risk neutral valuation. Dividend payments, pay-off and profit diagrams. The Black Scholes model, Ito's lemma, put-call parity, hedging, Binomial tree model.

Dynamics of random walks: Random variables, lognormal distribution, volatility, discrete and continuous stochastic models, Wiener and Generalised Wiener process, Geometric Brownian motion, mean reverting processes, Ito process, stochastic differential equations.

STUDENT AND ACADEMIC SERVICES

Teaching and Learning Methods: Scheduled contact includes lectures and workshops. The latter serve partly to resolve issues brought up by the students on a week-by-week basis, and also to provide an arena for other learning activities appropriate to developing theory or to exploring applications.

Self-study includes: engaging with the resources provided; working on example sheets; locating and utilising other materials to support learning.

Contact: 36 hours

Assimilation and skill development: 54 hours

Coursework: 15 hours Exam preparation: 45 hours

Total: 150 hours

Part 3: Assessment

Component A. An online examination that assesses the student's understanding of concepts and techniques that involve analysis of real financial data within a trading strategy involving derivative contracts.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	✓	100 %	Online Examination
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	✓	100 %	Online Examination

Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes						
	To solve linear stochastic differential equations and obtain the probability distribution of the underlying variable						
	Select and apply appropriate techniques to price financial derivative contracts						
	Explain the underlying concepts and limitations of the Black-Scholes theory and be able to implement a dynamic hedging strategy to manage risk						
	Communicate mathematical concepts, analysis and results through a short writte report	n MO4					
Contact Hours	Independent Study Hours:						
	Independent study/self-guided study 11						
	Total Independent Study Hours:	114					

STUDENT AND ACADEMIC SERVICES

	Scheduled Learning and Teaching Hours:				
	Face-to-face learning	36			
	Total Scheduled Learning and Teaching Hours:	36			
	Hours to be allocated	150			
	Allocated Hours	150			
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/modules/ufmfug-15-3.html				

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mathematics [Sep][FT][Frenchay][4yrs] MMath 2018-19

Mathematics and Statistics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Mathematics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

Statistics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19