

MODULE SPECIFICATION

Part 1: Information							
Module Title	Pilot Studies and Aerodynamics						
Module Code	UFMF9C-30-2		Level	Level 5			
For implementation from	2018-	2018-19					
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty		ty of Environment & hology	Field	Engineering, Design and Mathematics			
Department	FET	FET Dept of Engin Design & Mathematics					
Contributes towards							
Module type:	Stanc	Standard					
Pre-requisites		Engineering Mathematics 2018-19, Introduction to Aeronautics 2018-19					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: The course aims to provide a basic education in aerodynamics and flight mechanics with illustrated practical and computational exercises so that students can gain a true feel for aircraft performance and stability.

Outline Syllabus: Aspects of Ground school training for a typical Private Pilots licence including (for pilots) meteorology, interpreting weather data, aircraft systems, communications, flight information, flight computers, weight and balance, performance, navigation and cross country flight planning.

Principles of Stability and Control: Static Stability, Dynamic Stability.

Static Stability: Longitudinal Stability, Neutral Point, Static Margin, Calculation of Elevator Angle to Trim, Stick-fixed versus Stick-free Static stability, Elevator Hinge Moment, Lateral Stability.

Subsonic Flow over Aerofoils and wings: flow field characteristics; influential flow field and shape parameters; stall and separation; boundary layer flows.

STUDENT AND ACADEMIC SERVICES

Potential theory, 2D aerofoil and 3D wing theory including vortex systems.

Transonic and Supersonic Flows over aerofoils: compressible flows, shock waves.

High lift profiles and devices, effects of leading and trailing edges.

Introduction to computational fluid dynamics (CFD): relevant equations, principles of discretisation, turbulence models, mesh generation, boundary conditions, accuracy and convergence, post-processing, validation and assessment of results.

Teaching and Learning Methods: See Assessment

Part 3: Assessment

This module covers theoretical and practical aspects of aerodynamics, performance, static stability and orbital mechanics.

Component A is a two hour exam on Aerodynamics

Component B is an assessment portfolio demonstrating key skills. It reinforces theory by giving students practical experience in applying the theoretical principles in a real context. It includes:

Aerodynamics assignment including computational fluid dynamics (CFD), and physical testing of flows. Performance, stability assignment.

Basic spacecraft trajectories and manoeuvres.

First Sit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Portfolio
Examination - Component A	~	25 %	Examination (2 hrs)
Resit Components	Final Assessment	Element weighting	Description
Portfolio - Component B		75 %	Portfolio
Examination - Component A	~	25 %	Examination (2 hrs)

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will be able to:					
		Module Learning Outcomes				
	MO1	Use aerodynamic theory for describing subsonic, transonic and supersonic flows				
	MO2	Acquire basic knowledge in flight theory for performance, stability and design of aircraft and spacecraft				
	MO3	Use of numerical models to produce simulations of aerodynamic flows for basic geometries in different flow regimes				
	MO4	Acquire piloting skills through ground school training				
	MO5	Demonstrate key transferable skills in problem formulation and decision making, self-management and communication				
	MO6	Demonstrate an awareness of, and access to professional literature				

STUDENT AND ACADEMIC SERVICES

Contact Hours	Contact Hours Independent Study Hours:					
	Independent study/self-guided study	228				
	Total Independent Study Hours:	228				
	Scheduled Learning and Teaching Hours:					
	Face-to-face learning	72				
	Total Scheduled Learning and Teaching Hours:	72				
	Hours to be allocated	300				
	Allocated Hours	300				
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmf9c-30-2.html					