
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title C++ Development

Module Code UFCFBF-15-2 Level Level 5

For implementation
from

2019-20

UWE Credit Rating

15 ECTS Credit Rating 7.5

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Module type:

Standard

Pre-requisites

Programming in C 2019-20

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

Part 2: Description

Overview: Pre-requisites: students must take one out of UFCFWA-30-1 Entertainment Software
Development or UFCFF6-30-1 Programming in C

Educational Aims: See Learning Outcomes

Outline Syllabus: Rationale for using C++ in Software Development

C++ language features:

Memory allocation / deallocation

Object orientation: inheritance and polymorphism

Exception handling

Templates

Operator overloading

STUDENT AND ACADEMIC SERVICES

2

Delegate functions

Compiler directives

Unmanaged code:

Automatic vs dynamic memory handling

Standard Template Library

Measuring and analysing performance

Memory alignment, bit manipulation, packing, pooling

Teaching and Learning Methods: Contact time: 36 hours

Assimilation and development of knowledge: 74 hours

Exam preparation: 10 hours

Coursework preparation: 30 hours

Total study time: 150 hours

Lectures will be used to introduce relevant programming concepts whilst being practically
explored within supervised studio sessions guided by tutorial tasks.

A set number of the tutorial tasks are to be completed to form individual lab logbooks.

Aside from the tutorial tasks, students will be set a small number of more challenging tasks to
implement taught concepts, using supplied designs / code / libraries / SDKs where appropriate. It
is expected that the majority of this work will be carried out independently, outside of taught
sessions, though specific sessions will be organised to provide targeted help with these tasks
prior to hand-in.

Part 3: Assessment

Formative assessment:
The tutorial tasks set for the module will be peer and tutor reviewed regularly in studio/practical sessions.
Completed tasks will contribute to a logbook, which forms part of the students’ portfolios. While this logbook
contributes to the summative assessment, it is assessed on a pass/fail basis only, and is designed to encourage
student engagement.

Summative assessment:
In addition to the tutorial tasks, a small number of more challenging tasks will be set. These tasks form the
summative part of the portfolio for the module, and will be set in order of increasing complexity/weighting. The
reason behind this strategy is to align assessed tasks with the topics being taught, and distribute workload for the
module across the year.

A final assessment for the module will ensure detailed understanding of language mechanisms that form part of
several learning outcomes but cannot easily be assessed through practical tasks.

STUDENT AND ACADEMIC SERVICES

3

First Sit Components Final
Assessment

Element
weighting

Description

 Portfolio - Component B 75 % Portfolio of practical exercises and lab logbook

 Presentation - Component
A

✓ 25 %
Presentation / demonstration

Resit Components Final
Assessment

Element
weighting

Description

 Portfolio - Component B 75 % Portfolio of practical exercises

 Presentation - Component
A

✓ 25 %
Presentation / demonstration

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will achieve the following learning outcomes:

Module Learning Outcomes Reference

Analyse the impact of using various C++ language features on the compilation
process for non-trivial software projects

MO1

Demonstrate an in-depth understanding of the run-time behaviour of a C++
application, and the significance of the call-stack

MO2

Design and implement object orientated applications that make appropriate use of
mechanisms such as polymorphism, templates and delegate functions

MO3

Apply their understanding of issues surrounding memory management within C++,
to develop object oriented applications which avoid issues such as memory leaks,
pointer errors and undefined behaviour

MO4

Recognise issues related to efficiency and organisation of memory resources
within unmanaged code and apply strategies to reduce their impact on run-time
performance

MO5

Discuss the role and significance of external libraries and Software Development
Kits (SDKs), their relationship to C++ and their role in crossplatform development

MO6

Contact
Hours

Independent Study Hours:

Independent study/self-guided study 114

Total Independent Study Hours: 114

Scheduled Learning and Teaching Hours:

Face-to-face learning 36

Total Scheduled Learning and Teaching Hours: 36

Hours to be allocated 150

STUDENT AND ACADEMIC SERVICES

4

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Electronic and Computer Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering {Top Up} [Aug][FT][SHAPE][1yr] BEng (Hons) 2018-19

Electronic and Computer Engineering {Top Up} [Aug][PT][SHAPE][2yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering {Apprenticeship} [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19

Allocated Hours 150

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/modules/ufcfbf-15-2.html

