

MODULE SPECIFICATION

Part 1: Information								
Module Title	Systems Analysis and Databases							
Module Code	UFCFQE-30-1		Level	Level 4				
For implementation from	2019	2019-20						
UWE Credit Rating	30		ECTS Credit Rating	15				
Faculty	Faculty of Environment & Technology		Field	Computer Science and Creative Technologies				
Department	FET I	T Dept of Computer Sci & Creative Tech						
Module type:	Stand	indard						
Pre-requisites		None						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Techniques for conducting systems investigation, e.g. interviews, observation, questionnaires, document gathering...etc.

The current methodologies available for analysing and designing systems, e.g. Prototyping, DSDM, RAD.

UML modelling.

Advantages and disadvantages of a case tool.

Problems of traditional file based approaches to data access.

Database terminology and normalization technique.

DBMS as a layer between the user and the data.

Facilities of a DBMS, SQL, DML and DDL.

The 3-layer SPARC model for DBMS.

Physical, logical and external schemas.

Implement and test external schemas for a relational database

Teaching and Learning Methods: 300 hours study time of which 108 hours will represent scheduled learning.

Scheduled learning will typically include lectures, seminars, supervision and an interactive forum.

All students are expected to attend a series of tutorials.

Introductory lectures (25%) are supported by seminars, case studies, visits (15%) and practical workshops (60%). In addition this module will be supported by interactive forums and learning tools.

192 hours research, independent study and preparation for assessment work: Independent learning includes hours engaged with reading, assignment preparation and completion. Student study time will be organised each week with a series of both essential and further readings and preparation for practical workshops.

Part 3: Assessment

A range of assessment techniques will be employed to ensure that learners can meet the breadth of learning outcomes presented in this module alongside the ability to demonstrate transferable skills e.g. communication skills.

Examination: To demonstrate an understanding of the underlying concepts of systems analysis and their application to real-world development situations.

Time-constrained assessment: Analysis of a business problem and design of a solution. Students must produce a model for the proposed system based on their data requirements.

Implementation, Testing and Evaluation of a database solution The task will include implementation, testing and evaluation of a database solution. Students will produce the database and suitable accompanying documentation e.g. user guide.

Opportunities for formative assessment exist for the assessment strategy used. Verbal feedback is given and all students will engage with personalised tutorials setting SMART targets as part of the programme design.

First Sit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B	✓	60 %	Implementation, Testing and Evaluation of a Database Solution
In-class test - Component A		24 %	Time-constrained assessment (2.5 hours) in-class
Examination - Component A		16 %	Examination (1.5 hours)
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B	~	60 %	Implementation, Testing and Evaluation of a Database Solution FINAL ASSESSMENT
Set Exercise - Component A		24 %	Time-constrained assessment (2.5 hours)
Examination - Component A		16 %	Examination (1.5 hours)

	Part 4: Teaching and Learning Methods								
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:								
	Module Learning Outcomes		Reference						
	Explain the evolution and development of current system lifecycle mo	odels	MO1						
	Demonstrate the use of a range of techniques to analyse a business	concern	MO2						
	Apply and justify an appropriate methodology to construct a solution identified problem	to an	MO3						
	Implement and test the solution		MO4						
	Understand the evolution of databases, their advantages and limitation	ons	MO5						
	Comprehend the importance of the 3-layer SPARC model for the dat management system	abase	MO6						
	Design a logical schema for a relational database that meets the needs of a business requirement								
	Implement and test the solution								
Contact Hours	Independent Study Hours:								
	Independent study/self-guided study 192								
	Total Independent Study Hours:	19	192						
	Scheduled Learning and Teaching Hours:								
	Face-to-face learning	10	108						
	Total Scheduled Learning and Teaching Hours:	80							
	Hours to be allocated	3(00						
	Allocated Hours	00							
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/index.html								

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Applied Computing [Sep][FT][UCW][2yrs] FdSc 2019-20

Applied Computing [Sep][PT][UCW][3yrs] FdSc 2019-20