

MODULE SPECIFICATION

Part 1: Information						
Module Title	Safet	Safety Critical Embedded Systems				
Module Code	UFMF7D-15-M		Level	Level 7		
For implementation from	2019-	20				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engin Design & Mathematics				
Module type:	Stand	Standard				
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: See Learning Outcomes

In addition, the educational experience may explore, develop, and practise but not formally assess the following:

Understanding of the need for high-level professional and ethical conduct.

Outline Syllabus: The syllabus includes:

Real Time Programming:

The use of a compiled high level language (for example C) to effect

processing and decision-making in a realtime system.

Use of language subsets for safety critical systems eg MISRA C.

Use of development tools to support best practice, such as IDEs (Integrated Development

Environments), version control systems, bug and change tracking

Design methodologies and techniques for embedded development e.g. UML for real-time

systems. Design for debug, user interface design.

Use of a real-time executive.

STUDENT AND ACADEMIC SERVICES

Safety Critical Design:

Hazard analysis techniques

Examination of robust design, failure tolerance and failure recovery

Use of Standards such as DO-178B, IEC61508

High level design tools, auto generation of code

Teaching and Learning Methods: See Assessment

Part 3: Assessment

The module will be assessed in two components.

(Component A): Research an embedded systems failure reported through an individual presentation.

(Component B): Demonstration of an innovative solution to a design problem along with submission of a log book.

Formative assessment will be provided as oral feedback throughout the laboratory sessions particularly with respect to the design development and the log-book entries.

Students will also be assessed in their effective use of the test and verification tools, the quality of their programme design and documentation.

Formative feedback will be provided during the laboratory sessions and tutorials.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		75 %	Logbook showing development process and demonstration of final product
Presentation - Component A	✓	25 %	Oral presentation
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component B		75 %	Design exercise and demonstration
Presentation - Component A	✓	25 %	Oral presentation

Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:			
	Module Learning Outcomes	Reference		
	Investigate a problem and define constraints relating to safety, risk and environmental issues through the use of relevant techniques	MO1		
	Apply modelling techniques to evaluate the performance of embedded systems	MO2		
	Utilise concepts from outside of engineering and apply them to engineering problems	MO3		
	Show awareness of relevant legal and ethical requirements relating to safety and the ability to evaluate risks	MO4		
	Demonstrate a thorough understanding of current practice in embedded system design	MO5		
	Awareness of developing technologies related to the of safety critical embedded systems	MO6		

Part 4: Teaching and Learning Methods

STUDENT AND ACADEMIC SERVICES

Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	126			
	Total Independent Study Hours:	126			
	Scheduled Learning and Teaching Hours:				
	Face-to-face learning	24			
	Total Scheduled Learning and Teaching Hours:	24			
	Hours to be allocated	150			
	Allocated Hours	150			
Reading List	The reading list for this module can be accessed via the following link:				
	https://uwe.rl.talis.com/modules/ufmf7d-15-m.html				

Part 5: Contributes Towards	
This module contributes towards the following programmes of study:	