

MODULE SPECIFICATION

Part 1: Information						
Module Title	Hydraulics and Engineering Applications					
Module Code	UBGMNU-30-2	Level	Level 5			
For implementation from	2018-19					
UWE Credit Rating	30	ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology	Field	Geography and Environmental Management			
Department	FET Dept of Geography & Envrnmental Mgmt					
Contributes towards						
Module type:	Standard					
Pre-requisites	Mathematics for Civi	and Environmental Engineering 2018-19				
Excluded Combinations None						
Co- requisites None						
Module Entry requireme	nts None					

Part 2: Description

Features: Module Entry Requirements: 60 credits at Level 1

Educational Aims: In addition to the learning outcomes, the educational experience may explore, develop, and practise but not formally discretely assess the following: Working as a team member

Outline Syllabus: HYDRAULICS (FLUID MECHANICS):

Statics: general properties of fluids, pressure, buoyancy.

Basic Concepts of Fluid Motion: flow of Newtonian fluids, types of flow, drag.

Two Dimensional Inviscid Flow: conservation equations, continuity, Bernoulli equation,

kinematics of fluid motion, velocity, acceleration, streamlines.

Dynamics: laminar and turbulent flows, Reynold's number, fluid acceleration, energy equation,

momentum equation, flow around a cylinder, flow around aerofoils and over buildings.

Open Channel Flow: classification, Manning's equation, sections, normal depth, Bernoulli

equation, critical depth, critical conditions, hydraulic jumps, flumes, weirs.

STUDENT AND ACADEMIC SERVICES

Steady Flow in Pipes: Darcy equation, Moody diagram, HR Wallingford tables.

Unsteady Pipe Flow: pressure surge – simulation and mitigation techniques.

Machines: the use and characteristics of roto-dynamic pumps and turbines.

Dimensional Analysis: principles, dimensionless groups, dynamic similarity, experimental

Hydraulic modelling: numerical / physical, creating a model .

APPLICATIONS (FEASIBILITY STUDY):

Determine alternative design options.

Use Net Present Value analysis.

Teaching and Learning Methods: Scheduled learning includes lectures, seminars, tutorials, project supervision, demonstration, practical classes and workshops; fieldwork; external visits; supervised time in studio/workshop. Scheduled sessions may vary slightly depending on the module choices you make.

Independent learning includes hours engaged with essential reading, assignment preparation and completion etc. Students will receive on average 3 hours contact time per week. This will be in a range of formats including lectures, tutorials, hydraulics laboratories, computer laboratories and field work.

The amount of time spent on activities in this module is shown below in hours:

Contact time: 72

Assimilation and development of knowledge: 150

Exam and coursework preparation: 78

Total study time: 300

Part 3: Assessment

Component A - Examination. Learning outcomes 1,2, 3, 4, 5, 7 and 8

3 hour examination (Hydraulics).

Written exam with an unseen question paper.

Assessment will be a mix of calculation based solutions and descriptive theory.

Component B - Report. Learning outcomes 1, 3, 4, 6, 7 and 8.

3000 word report (Applications).

Report to be based on a feasibility study of a hydraulic application.

Assessment will be base on relevance, depth of interpretation and

standards of literacy and presentation.

First Sit Components	Final Assessment	Element weighting	Description
Report - Component B		50 %	Report (3000 words)
Examination - Component A	✓	50 %	Exam (3 hours)
Resit Components	Final Assessment	Element weighting	Description
Report - Component B		50 %	Report (3000 words)
Examination - Component A	✓	50 %	Exam (3 hours)

Learning Outcomes	On successful completion o	f this module students will be able to: Module Learning Outcomes Show a detailed knowledge and under				
	MO1	Module Learning Outcomes Show a detailed knowledge and under				
	MO1	Show a detailed knowledge and unde				
		Show a detailed knowledge and understanding of the application				
		of hydraulics to describe and solve pr				
		and environmental engineering				
-	MO2	Explain basic concepts and derive log				
	MO3	Calculate pressures and loads impose fluids	ed by static and moving			
-	MO4	Design open channels and pipes				
	MO5		Compare and contrast the requirements for and applications of			
-	MOC	hydraulic modelling				
	MO6	. Undertake a feasibility study, selecting appropriate systems, technologies and materials for a hydraulic application				
-	MO7	Show cognitive skills with respect to logical thinking and the use				
		of symbolic language to describe the relationships between real				
		or abstract quantities in the context of	problems that arise in civil			
-		and environmental engineering				
	MO8	Recognise and understand the link to				
<u> </u>		and the typically non-linear nature of	engineering problems			
Contact Hours	Contact Hours					
	Independent Study Hours	:				
	Independent study/self-guided study		228			
		Total Independent Study Hours:	228			
	Scheduled Learning and Teaching Hours:					
	Face-to-face learn	ing	72			
	Total S	Scheduled Learning and Teaching Hours:	72			
-	Hours to be allocated		300			
-	Allocated Hours		300			
List	The reading list for this mod	dule can be accessed via the following link:				