

MODULE SPECIFICATION

Part 1: Information						
Module Title	Practical Electronic Design					
Module Code	UFMFA7-15-2		Level	Level 5		
For implementation from	2018-19					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Facul ⁻ Techr	ty of Environment & nology	Field	Engineering, Design and Mathematics		
Department	FET Dept of Engin Design & Mathematics					
Contributes towards						
Module type:	Project					
Pre-requisites		Electrical and Electronic Principles A 2018-19, Electrical and Electronic Principles B 2018-19, Introduction to Robotics and Electronics 2018-19, Practical Electronics 2018-19				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: Pre-requisites: students must take UFMFP8-15-1 and UFMFVA-15-1 Electrical and Electronic Principles A and B, or Introduction to Robotics and Electronics UFMFJ3-30-1 and UFMFCA-15-1 Practical Electronics, or equivalent.

Educational Aims: In addition to the Learning Outcomes, the educational experience may explore, develop, and practise but not formally discretely assess the following: Circuit simulation EMC considerations and requirements for CE marking Environmental considerations (other than EMC) which impact upon design Modern electronic production techniques and considerations

Outline Syllabus: General overview of EDA (Electronic Design Automation) tools, and the underlying principles behind Schematic Capture and PCB layout tools.

General approach to common practice, and coverage of numerous detail specifics when creating a Schematic Design, and how this translates into a viable PCB layout through the appropriate

use of EDA tools.

Generation of outputs necessary to enable commercial procurement of PCBs.

Analysis of a design requirement leading to appropriate choice of components through consideration of component specifications on data sheets.

Circuit design techniques in common design scenarios, including specifics such as: Precision DC amplifier design Circuit protection techniques Power transistor considerations (Bipolar / MOSFET) Voltage regulation and referencing

Teaching and Learning Methods: Contact hours: 48 hours Self-study: 52 hours Assignment preparation: 50 hours Total: 150 hours

A variety of materials will be made available to students (covering the Syllabus Outline topics) via blackboard, and the students encouraged to self-study. Some materials will be module-specific; others will be references to materials such as tutorials and FAQs for the EDA software, and for example component manufacturers' Application Notes which are specifically aimed at helping customers (Engineers) to understand how to properly use their product in application.

Students are required to manage their own time during the entire semester across the two projects which will run concurrently. The teaching/learning format for these projects is EBL (enquiry-based learning), where the students are directed to request / demand key information in order to be able to meet the brief.

Students will therefore be encouraged to spend their contact time in the laboratory to conduct experiments and/or measurements of elemental parts of their designs by way of proving (in a prototyping sense) before committing to a 'full-prototype' PCB layout. They are also encouraged to seek help and/or engage in discussion re specific details or even general principles when questions occur.

The keeping of formal laboratory notebooks will be required to ensure adequate recording of the work undertaken, and to satisfy the requirements of accrediting bodies such as the IET that such practice is observed. The laboratory notebook will also serve as a minor grading mechanism for summative assessment, and as a vehicle for providing feedback.

Part 3: Assessment

Laboratory Notebook: To encourage students to maintain a Laboratory Notebook.

Project 1 is about understanding a design brief, evaluating options and developing through to a completed prototype design. This should include a schematic design, but not necessarily a PCB.

Assessed deliverables (40% of module) are therefore: A working prototype, to be demonstrated in the lab (50% of project). A short report (500-1000 words) and Schematic (50% of project).

Project 2 is less demanding in terms of detail design, but the packaging into a prototype PCB is required.

Assessed deliverables (40% of module) are therefore:

A working prototype, to be demonstrated in the lab (40% of project).

A doc package, to include Schematic, PCB layout, and detail specification for production (with costing) (40% of project).

A 'poster' with brief overall detail and 10 minute viva (20% of project).

A secondary reason for the viva is for verification that the student has produced the required deliverables.

STUDENT AND ACADEMIC SERVICES

Γ

First Sit Components	Final Assessment	Element weighting	Description
Project - Component A		40 %	Project 1 (featuring circuit analysis and design - e.g. Measurement cct)
Project - Component A	\checkmark	40 %	Project 2 (featuring electronic packaging- e.g. Power cct)
Laboratory Report - Component A		20 %	Laboratory log book
Resit Components	Final Assessment	Element weighting	Description
Set Exercise - Component A	~	100 %	One day (6 hours) design/build/test exercise

	Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will be able to:						
		Module Learning Outcomes					
	MO1	Demonstrate an ability to keep organ	nised records of work				
		undertaken in a formal Laboratory No	undertaken in a formal Laboratory Notebook				
	MO2	Show cognitive skills with respect to	Show cognitive skills with respect to the analysis of a design				
		specification, and make appropriate	component selection				
	1400	through research and analysis of ava	allable component data				
	MO3 Demonstrate knowledge and cognitive skills in respec						
	advanced circuit design considerations such as those (for						
		measurement circuit to amplify and c	measurement circuit to amplify and condition a transducer				
		output, an efficient dc-dc converter, d	or the power electronics as				
	appropriate to drive an actuator						
	MO4	Demonstrate knowledge and unders	tanding of a variety of				
		packaging formats for various moder	n electronic components,				
		particularly SMT variants					
	MO5	Demonstrate knowledge of and competence in the					
		of printed circuit board parameters si	unicient to be able to satisfy				
		on-line order	uter when placing a typical				
	MO6	Demonstrate knowledge of and competence in the use					
	mee	typical Printed Circuit Design softwar	re package, sufficient to				
		enable the production of a prototype	design to be realised				
Contact Hours	Contact Hours						
	Independent Study Ho	ours:					
	Independent study/self-guided study 102						
		Total Independent Study Hours:	102				

	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	48					
	Total Scheduled Learning and Teaching Hours:	48					
	Hours to be allocated	150					
	Allocated Hours	150					
Reading	The reading list for this module can be accessed via the following link:						
LIST	https://uwe.rl.talis.com/modules/ufmfa7-15-2.html						