
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Object-Oriented Systems Development

Module Code UFCFB6-30-2 Level Level 5

For implementation
from

2020-21

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Module type:

Standard

Pre-requisites

Introduction to OO Systems Development 2020-21

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Theory and concepts of the object-oriented paradigm: objects and classes,
encapsulation and visibility, cohesion and coupling, instance and class scope attributes and
methods, inheritance and polymorphism, leading to abstract classes – overriding and
overloading.

Object-oriented systems software development lifecycles: phases (requirements capture and
analysis, design, code, test), iterative and waterfall methods e.g. agile (the agile manifesto),
reuse and integration, test-driven development.

Object-oriented analysis and design techniques: use cases (user stories), verb-noun analysis,
abstraction, Class-Responsibility Collaboration (CRC), and heuristics for design evaluation and
test case generation.

Tools: an UML modelling tool (e.g. ArgoUML) with cognitive assistance wizards. A java-based
Interactive Development Environment (IDE) e.g. NetBeans, providing application projects,
packages, classes, build scripts, deployment, execution, debugging, testing (e.g. JUnit), and
version control.

STUDENT AND ACADEMIC SERVICES

2

Software Patterns and Architecture: Model-View-Controller (MVC), analysis patterns (e.g. Arlow
and Neustadt), design patterns (e.g. Gamma et al.), architectural patterns e.g. separation of
concerns for multi-tier distributed software systems and interoperability for systems of increasing
scale, complexity, multiple interactive channels and virtualisation.

Persistence: File input / output. Java Database Connectivity (JDBC), serialisation, introductory
database entity design and implementation (tables, inserts, queries, result sets etc.)

Concurrency and Distributed Systems: Theory and potential solutions relating to the changes of
concurrency, design and implementation of concurrent systems.

Distributed systems – network architectures and protocols, Sockets, Datagram and RMI.

Graphical User Interfaces: user-centric design, usability testing, event-driven paradigms –
graphical components, events, listeners, handlers.

Teaching and Learning Methods: Contact time: 72 hours

Assimilation and development of knowledge: 148 hours

Exam preparation: 40 hours

Coursework preparation: 40 hours

Total study time: 300 hours

Scheduled learning includes interactive lectures, wherein the theory and practice of object-
oriented systems design and development are demonstrated; questions are invited and freely
discussed. Audio recordings are taken of all lectures and made available as podcasts via the
Blackboard Virtual Learning Environment (VLE). All lecture slides, recommended articles, videos
and tutorial notes are available on the Blackboard VLE. Also within the interactive discursive
tutorials, students are encouraged to articulate and present their analysis and design models of a
realistic industrial case study, as well as implementation source code and associated tests, to
their peers in small groups. Interactive cohort peer-review is then encouraged as a mechanism
for self-evaluation and reflection upon software design and code artefacts. In addition, continual
tutor and peer feedback provides the essential component of the deep learning environment
provided to students.

Independent learning includes hours engaged with essential reading, case study preparation,
assignment preparation and completion etc. Explicit direction is given to students with respect to
selected reading materials for self-study – more information is provided in the following section.
Self-study is crucial to this module as individual student reflection is a key technique for learning
software design and development. The Blackboard VLE offers podcasts and presentations for
students to interact with at their own pace. Also, high quality, robust java-based Open Source
software tools (e.g. ArgoUML and NetBeans) have been selected to enable maximum portability
and so ease of installation on a variety of students’ own laptop platforms for self-study, and are
available free of charge. Having the same tools consistently available on faculty workstations and
student laptops, when taken together with the Blackboard VLE, enables great interoperability
between development artefacts, promoting virtualisation of learning location. The learnings
achieved in self-study are then brought forward by the student and reinforced at the interactive
tutorials wherein their knowledge and understanding are deepened by directed articulation,
presentation and evaluation with their peers and tutors.

Part 3: Assessment

The assessment strategy for this module is a combination of written examination and coursework assignment.
The written examination is of three hours duration and comprises questions to examine cognate and practical
skills via a range of essay, multi-choice questions (MCQs), and appropriate analysis and design technique
exercises. Where appropriate, partial UML diagrams, source code fragments or partial text cases may be provided

STUDENT AND ACADEMIC SERVICES

3

as the basis for the examination question.

In the coursework assignment the students will design and implement a moderately realistic object-oriented
system. They will produce detailed object models and designs from system requirements; use the modelling
concepts provided by UML. The students will then map the designs into code and perform unit testing using
automated testing tools. Assessment of this will include an in-class demonstration and submission of a portfolio. In
this assessment apart from determining the technical progress of the students, their professional approach when
dealing with group dynamics will also be
assessed.

First Sit Components Final
Assessment

Element
weighting

Description

 In-class test - Component B
 50 %

A group coursework software design and
development assignment – (submitted on-line).
Assessment by an in-class demonstration.

 Examination (Online) -
Component A

 50 %
Online Written Examination (3 hrs)
24-hour window

Resit Components Final
Assessment

Element
weighting

Description

 Report - Component B

 50 %

Design and Implementation of a software system.
Submitted as a report with supporting software. The
report should detail about how the development
would be achieved when working in a team of
developers. This should be incorporated into the agile
development section of the document.

 Examination (Online) -
Component A

 50 %
Online Written Exam (3 hrs)
24-hour window

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will achieve the following learning outcomes:

Module Learning Outcomes Reference

Describe the theory and concepts of the object-oriented paradigm MO1

Explain the essential characteristics of the object-oriented software systems
development life cycle, including testing

MO2

Apply object-oriented analysis and design techniques for a number of problem
domains scoped at level 2 complexity

MO3

Understand and use a Unified Modelling Language (UML) modelling tool and a
Java-based Interactive Development Environment (IDE) to develop object
oriented software implementations appropriate to level 2 complexity

MO4

At an introductory level, apply object-oriented software patterns and architectures
for increasingly large scale distributed software systems

MO5

Use an appropriate development environment to design and implement
persistence within a distributed architecture at an introductory level

MO6

Design and implement concurrent systems and distributed systems MO7

Design and implement Graphical User Interfaces (GUIs) MO8

Develop the necessary professional skills considering Agile approach while
working in a group.

MO9

Contact
Hours

Independent Study Hours:

Independent study/self-guided study 228

STUDENT AND ACADEMIC SERVICES

4

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Software Engineering for Business [Sep][FT][Frenchay][3yrs] BSc (Hons) 2019-20

Software Engineering for Business [Sep][SW][Frenchay][4yrs] BSc (Hons) 2019-20

Software Engineering [Oct][FT][GCET][4yrs] BEng (Hons) 2018-19

Computer Science {Foundation} [Sep][SW][Frenchay][5yrs] BSc (Hons) 2018-19

Computer Science {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2018-19

Software Engineering [Feb][FT][GCET][4yrs] BEng (Hons) 2018-19

Software Engineering for Business {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2018-19

Software Engineering for Business {Foundation} [Sep][SW][Frenchay][5yrs] BSc (Hons) 2018-19

Business Computing [Sep][FT][Frenchay][3yrs] BSc (Hons) 2019-20

Business Computing [Sep][SW][Frenchay][4yrs] BSc (Hons) 2019-20

Business Computing {Foundation} [Sep][SW][Frenchay][5yrs] BSc (Hons) 2018-19

Business Computing {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2018-19

Total Independent Study Hours: 228

Scheduled Learning and Teaching Hours:

Face-to-face learning 72

Total Scheduled Learning and Teaching Hours: 72

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/modules/ufcfb6-30-2.html

