

MODULE SPECIFICATION

Part 1: Information								
Module Title	Contr	ol						
Module Code	UFMFV7-15-2		Level	Level 5				
For implementation from	2019-20							
UWE Credit Rating	15		ECTS Credit Rating	7.5				
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics				
Department	FET [Dept of Engin Design & Mathematics						
Module type:	Stand	ndard						
Pre-requisites		Engineering Mathematics 2019-20						
Excluded Combinations		None						
Co- requisites		None						
Module Entry requirements		None						

Part 2: Description

Overview: Control Engineering is a subject that spans and incorporates many disciplines of engineering. This module is designed to provide a solid foundation of knowledge, with practical exercises to form the link between the theory and techniques and the real engineering world.

Educational Aims: See Learning Outcomes.

Outline Syllabus: Introduction to system modelling and the use of transfer functions. Developing models from first engineering principles, and using the Laplace operator "s". Cross discipline examples.

System classification by order. System time responses and behaviour.

Introduction to Closed loop feedback control, the use and manipulation of Block diagrams.

Use of the "s" plane as a means of representing the system. Root locus plots.

Frequency response analysis and the relationship with the transfer function (system identification).

Modifying behaviour and the design of standard controllers

Use of computer software for simulation and design of control systems

Introduction to State space techniques and non-linearity

Teaching and Learning Methods: Large group lecture supported by small group tutorial/laboratory sessions. Study time outside of contact hours will be spent on going through exercises and example problems.

Lab sessions (small groups) will provide a design opportunity to link the abstract theoretical concepts and techniques to real engineering tasks.

Scheduled learning includes lectures, tutorials and laboratory classes.

Independent learning includes hours engaged with essential reading, assignment preparation and completion etc.

Student contact time (in hours): (Module runs in one semester only): Contact: 36 Assimilation and skill development: 64 Coursework preparation: 25 Exam preparation: 25 Total: 150

Part 3: Assessment

Component A:

Assessed via end of semester Exam, which is a summative assessment. Formative assessments (not contributing to module mark) are provided via support in tutorial/lab sessions. End of semester exam is two hours.

Component B:

Assignment based on laboratory work and design exercise. Formative assessments (not contributing to module mark) are provided via support in tutorial sessions.

First Sit Components	Final Assessment	Element weighting	Description
Practical Skills Assessment -		50 %	Assessment of practical work
Component B			
Examination - Component A	~	50 %	End of semester exam (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Practical Skills Assessment -		50 %	Assessment of simulated practical work
Component B		50 /0	
Examination - Component A	~	50 %	Exam (2 hours)

Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:							
	Module Learning Outcomes	Reference						
	Understand the principles and methods used in control engineering a disciplinary boundaries	MO1						
	Demonstrate an understanding and knowledge of the key mathemati needed to properly analyse control systems	MO2						
	Apply and integrate knowledge from other engineering disciplines	MO3						
	Classify, identify and describe the performance of systems using ana methods and modelling tools	alytical	MO4					
	Demonstrate the ability to apply appropriate theoretical and practical the analysis and solution of control engineering problems	MO5						
	Show cognitive skills with respect to modelling and simplifying real paper applying mathematical methods of analysis	MO6						
	Demonstrate skills in problem formulation and decision making, inter experimental results	ation and decision making, interpreting						
Contact	Independent Study Hours:							
Hours	· · ·							
	Independent study/self-guided study	114						
	Total Independent Study Hours:	14						
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	6						
	Total Scheduled Learning and Teaching Hours:	6						
	Hours to be allocated	50						
	Allocated Hours	150						
Reading	The reading list for this module can be accessed via the following link:							
List	https://uwe.rl.talis.com/modules/ufmfv7-15-2.html							

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Electrical and Electronic Engineering {Top-Up} [Oct][FT][[AustonSingapore][1yr] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Feb][FT][AustonSingapore][1yr] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [May][PT][AustonSingapore][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [May][FT][AustonSingapore][1yr] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Feb][PT][AustonSingapore][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Oct][PT][AustonSingapore][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Oct][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Oct][PT][AustonSriLanka][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Feb][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Feb][PT][AustonSriLanka][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [May][FT][AustonSriLanka][1yr] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [May][PT][AustonSriLanka][1.3yrs] BEng (Hons) 2019-20 Electronic Engineering [Sep][SW][Frenchay][5yrs] MEng 2018-19 Robotics [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Electrical and Electronic Engineering [Sep][SW][Northshore][5yrs] MEng 2018-19 Robotics [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19 Electrical and Electronic Engineering [Sep][SW][Frenchay][5yrs] MEng 2018-19 Electronic Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19 Electronic Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19 Electronic Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Electronic and Computer Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19 Electronic and Computer Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19 Electronic and Computer Engineering {Top Up} [Aug][FT][SHAPE][1yr] BEng (Hons) 2018-19 Electronic and Computer Engineering {Top Up} [Aug][PT][SHAPE][2yrs] BEng (Hons) 2018-19 Electronic and Computer Engineering [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19 Electronic and Computer Engineering {Apprenticeship} [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19