

MODULE SPECIFICATION

Part 1: Information							
Module Title	Motorsport Performance						
Module Code	UFMFT9-30-3		Level	Level 6			
For implementation from	2020-21						
UWE Credit Rating	30		ECTS Credit Rating	15			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	dard					
Pre-requisites		Automotive Technology 2020-21					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: This module introduces advanced automotive/motorsport specific content in engines, aerodynamics, vehicle dynamics and vehicle systems. The knowledge presented here will be used to extend specialist knowledge at level 4.

Educational Aims: See Learning Outcomes

Outline Syllabus: The syllabus includes:

Vehicle Dynamics (Chassis):

Vehicle control and design parameters that impact on handling performance.

Yaw and roll analysis.

Suspension concepts and design

Critical and characteristic speeds and static margin, yaw and roll.

Experimental techniques and vehicle handling performance prediction.

Chassis data acquisition and analysis.

Vehicle Dynamics (Aero):

Ground effect;

Wheel drag.

Vortices and vortex generation.

Effect of Aerodynamic force on Performance - Aerodynamic force and maximum speed; Drag effect on fuel consumption and acceleration.

Fundamental analysis of forces affecting car stability - Position of the centre of aerodynamic pressure; Side force; Aerodynamic moments about centre of gravity.

Effect of Aerodynamic forces on steady stability - Equations of equilibrium; The static margin; Turning characteristics.

Wind tunnels and Measurement techniques.

Engines:

Review of engine performance descriptors and terminology.

Analysis of complex problems: analytical and numerical methods.

Analytic approaches: the Air Standard cycle; review of thermodynamics.

Numerical approaches: a framework for a simulation model; validation.

Synergy of theoretical modelling and experimental testing: Willan's Line.

Properties of the working fluid; standard methods of prediction; approximations and simplifications.

Fuel-Air mixtures; stoichiometry.

The Fuel-Air cycle; improved predictive capability.

The combustion process: underlying processes, empirical models, implementation in simulation.

Ignition Timing: simulations, observations and implications.

Gas Exchange Processes: analytic and numerical approaches; throttled running, pumping work, residual gas fractions.

Teaching and Learning Methods: All group lecture supported by small group laboratory sessions that will provide experience of empirical methods.

Study time outside of contact hours will be spent on going through exercises and example problems as well as assignment preparation.

Scheduled learning includes lectures, tutorials\lab sessions.

Independent learning includes hours engaged with essential reading, assignment preparation and completion.

Contact Hours:

Activity: Contact: 72 hours Assimilation and skill development: 126 hours Coursework: 34 hours Exam preparation: 68 hours Total: 300 hours

Part 3: Assessment

Component A: Examination

Assessed via end of year Exam to assess the students understanding of concepts and techniques.

Component B: Coursework

Assessed via 1 piece of coursework on an applied engineering problem to encourage engagement and focus on formative function and independent learning.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	75 %	Online Exam
Written Assignment - Component B		25 %	Coursework assessment
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	75 %	Online Exam
Written Assignment -		25 %	Coursework assessment

Part 4: Teaching and Learning Methods				
Learning Outcomes	On successful completion of this module students will achieve the following learning	g outcomes:		
	Module Learning Outcomes	Reference		
	Steady state vehicle dynamics, vehicle aerodynamics and its impact on performance	MO1		
	Show detail knowledge and understanding of engine combustion and modelling	MO2		
	Develop knowledge and understanding of the techniques for solving and analysing complex problems relating to vehicle dynamics	MO3		
	Show cognitive skills in developing modelling and simplifying real problems, applying fundamental principles of mechanical engineering to the analysis of realistic problems and making recommendations based on analysis			
	Ability to model and simplify real problems, apply mathematical methods of analysis, and understand the capabilities of computer based modelling	MO5		
	Demonstrate key transferable skills in problem formulation and decision making, interpreting experimental results	MO6		
	Demonstrate the ability to progress to independent learning	MO7		
Contact Hours	Independent Study Hours:			
	Independent study/self-guided study	228		

	Total Independent Study Hours: Scheduled Learning and Teaching Hours:	228
	Face-to-face learning Total Scheduled Learning and Teaching Hours:	72 72
	Hours to be allocated	300
	Allocated Hours	300
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmft9-30-3.html	

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Automotive Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19

Automotive Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19