

MODULE SPECIFICATION

Part 1: Information						
Module Title	Statistical Research Method		ls			
Module Code	UFMFK7-30-3		Level	Level 6		
For implementation from	2020-21					
UWE Credit Rating	30		ECTS Credit Rating	15		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET Dept of Engin Design 8		& Mathematics			
Module type:	Standard					
Pre-requisites		Statistical Modelling 2020-21				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Overview: This module is concerned with the careful use of quantitative research methodology and the application of statistical techniques in empirical research.

Educational Aims: See Learning Outcomes.

Outline Syllabus: The syllabus includes:

Advanced modelling techniques: Binary, ordinal and nominal logistic regression models: application, theoretical underpinning, model diagnostics. Discriminant Analysis: applications and interpretation, theoretical underpinning, model diagnostics. Multivariate Analysis of Variance. Survival Analysis.

Biomedical research techniques:

Principles of experimental designs relating to medical studies including the clinical control randomised trial (randomisation, replication, blinding, use of controls, trial protocol, and the conduct of CRT); prospective cohort studies, case control studies, cross-sectional studies, longitudinal studies, cross-over trials, and their conduct.

Determination of sample size for a given study.

The analysis of category data arising in a medical context including (odds ratios within and

STUDENT AND ACADEMIC SERVICES

across strata, relative risk, log-linear modelling, sensitivity, specificity, negative predictive value, positive predictive value, evaluating predictive value of a test using Bayes Theorem, ROC
curves). Measures of reliability including Intra Class Correlations, Bland-Altman plots, Cohen's kappa. Analysis of survival data including the proportional hazards survival model, estimation of survival probabilities, Kaplan-Meier survival curves, log rank tests.
Industrial Studies: Two-level full and fractional factorial designs, central composite and rotatable designs and process optimisation. Taguchi methods and their role in product design and quality improvement.
Time Series Analysis: ARIMA modelling.
Missing data: Concepts of missingness (MCAR, CAR, NMAR); effects of missing data; methods for handling missing data (e.g. imputation, multiple imputation, mean imputation, last one carried forward, listwise deletion, pairwise deletion); limitations and consequences of missing data.
Meta-analysis: Introduction to meta-analysis. Systematic reviews, publication bias, effect sizes, random and fixed effects models; examples taken from the empirical literature.
Familwise error rate: Multiple comparisons in ANOVA (e.g. Tukey's test, Student-Newman-Keuls test, Ryan-Einot- Gabriel-Welch tests, least significant difference), Tamhane's test, Games-Howell test, Hsu's test) and techniques to control Type I error rates (e.g. Bonferroni-Dunn, Hochberg step down, Hochberg step up) and the False Discovery Rate. When to use these tests.
Teaching and Learning Methods: The module is delivered by means of lectures, tutorials/practicals or workshops. To prepare for assessment, students are expected to undertake self-directed learning in addition to the directed learning which supports taught classes:
Contact time: 75 hours Assimilation and development of knowledge: 150 hours Assessment: 75 hours TOTAL: 300 HOURS
Scheduled teaching hours takes the form of two concurrent streams:
Stream 1: Whole group lectures, used to deliver new material and to consolidate previous material. Weekly computer practical, with activities following on directly from the lecture to develop analytical skills and gain practical experience.
Stream 2: A fortnightly lecture/workshop session used to introduce major themes and use case studies, published research papers and research examples. A fortnightly tutorial/practical session used to discuss the themes introduced in the lecture/workshop in Stream 2.
Part 3: Assessment
Component A consists of an examination which assesses students' understanding of concepts and techniques as well as their ability to interpret results within different contexts.

Component B consists of two short assignments worth 25% each. One assessment will focus on the statistical modelling of data and the second assessment will be on design concepts and the analysis of data to answer a defined research question.

STUDENT AND ACADEMIC SERVICES

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	50 %	Online Written examination
Written Assignment - Component B		25 %	Coursework 1 (max 10 pages)
Written Assignment - Component B		25 %	Coursework 2 (max 10 pages)
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	50 %	Online Written examination
Written Assignment - Component B		50 %	Coursework (max 20 pages)

	Part 4: Teaching and Learning Methods			
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:	
	Module Learning Outcomes		Reference	
	Appropriately apply advanced statistical techniques in empirical researmodern day software	arch using	MO1	
	Assess model diagnostics to inform empirical model building			
	Interpret and explain a wide variety of empirical statistical models in c context (own analyses or research papers)	different	MO3	
	Examine limitations of inference from statistical models based on mo evaluation techniques and the way the data have been generated	del	MO4	
	Show detailed knowledge of the role played by statistical design in m industry	edicine and	MO5	
	Conduct literature searches to support empirical investigations and to cite sources of information	correctly	MO6	
Contact Hours	Independent Study Hours: Independent study/self-guided study	22	25	
	Total Independent Study Hours:	22	25	
	Scheduled Learning and Teaching Hours:			
	Face-to-face learning	7	5	
	Total Scheduled Learning and Teaching Hours:	7	5	

STUDENT AND ACADEMIC SERVICES

	Hours to be allocated	300
	Allocated Hours	300
Reading List	The reading list for this module can be accessed via the following link:	
	https://uwe.rl.talis.com/modules/ufmfk7-30-3.html	

Part 5: Contributes Towards
This module contributes towards the following programmes of study:
Mathematics and Statistics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19
Statistics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19
Mathematics [Sep][FT][Frenchay][4yrs] MMath 2018-19
Mathematics [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19