

MODULE SPECIFICATION

Part 1: Information							
Module Title	Energ	nergy Technologies					
Module Code	UFMFD7-15-3		Level	Level 6			
For implementation from	2020-	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Dept of Engin Design & Mathematics					
Module type:	Stand	ıdard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Overview: The principles and practice of a number of conventional and renewable power generation systems including technical, economic, environmental and political considerations.

Educational Aims: See Learning Outcomes.

Outline Syllabus: The syllabus includes:

Review of basic concepts of energy, power and efficiency; energy use in human activity.

Renewable Energy systems: power from water, wind, biomass, solar electricity generation and solar thermal systems.

Overview of power from nuclear energy.

Basics of electrical machines and distribution networks; structure of the UK electricity industry.

Energy use in Transport; future vehicle developments.

Teaching and Learning Methods: Lecture and tutorial sessions. Study time outside of contact hours will be spent on going through exercises and example problems.

Scheduled learning includes lectures, tutorials, demonstrations and discussions.

Independent learning includes hours engaged with essential reading, exercise preparation and completion etc.

Contact Hours:

Activity: Contact: 36 hours Assimilation and skill development: 70 hours Exam preparation: 44 hours Total: 150 hours

Part 3: Assessment

Component A: Assessed via end of semester Exam (two hours). Summative assessment.

Formative assessments (not contributing to module mark) are provided via support in tutorial sessions. End of semester exam is two hours.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	100 %	End of semester exam (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	100 %	Online Exam (2 hours)

	Part 4: Teaching and Learning Methods				
Learning Outcomes	On successful completion of this module students will achieve the following learning	outcomes:			
	Module Learning Outcomes				
	Describe the structure and benefits of renewable energy sources in Europe and in particular the UK	MO1			
	Use appropriate mathematical expressions to compute the generated power, its cost and the saved Co2 emission	MO2			
	Provide detailed design and analysis of the hybrid energy generation systems. These include power electronics, generators, control systems and network interfaces				
	Assess and analyse the potential of power generation from renewable energy sources at a particular site	MO4			
	Use knowledge of the relevant engineering principles for eco-friendly energy generation procedure and method	MO5			
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study 11	14			

	Total Independent Study Hours:	114					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	36					
	Total Scheduled Learning and Teaching Hours:	36					
	Hours to be allocated	150					
	Allocated Hours	150					
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfd7-15-3.html						

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Electrical and Electronic Engineering {Top-Up} [May][PT][AustonSriLanka][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Feb][PT][AustonSriLanka][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Oct][PT][AustonSriLanka][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [May][PT][AustonSingapore][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Feb][PT][AustonSingapore][1.3yrs] BEng (Hons) 2019-20 Electrical and Electronic Engineering {Top-Up} [Oct][PT][AustonSingapore][1.3yrs] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Sep][PT][AustonSingapore][2yrs] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Feb][PT][AustonSingapore][2yrs] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [May][PT][AustonSingapore][2yrs] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Sep][PT][AustonSriLanka][2yrs] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [Feb][PT][AustonSriLanka][2yrs] BEng (Hons) 2019-20 Mechanical Engineering (Mechatronics) {Top-Up} [May][PT][AustonSriLanka][2yrs] BEng (Hons) 2019-20 Mechanical Engineering (Nuclear) - Not Running BEng (Hons) 2017-18 Mechanical Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19 Mechanical Engineering [Sep][FT][Frenchay][3yrs] BEng 2018-19 Electronic Engineering [Sep][FT][Frenchay][4yrs] MEng 2018-19 Electronic Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19