

MODULE SPECIFICATION

Part 1: Information							
Module Title	Stres	Stress Analysis					
Module Code	UFMFQA-15-2		Level	Level 5			
For implementation from	2018-	2018-19					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty		ty of Environment & hology	Field	Engineering, Design and Mathematics			
Department	FET Dept of Engin Design & Mathematics						
Contributes towards							
Module type:	Stand	Standard					
Pre-requisites		Stress & Dynamics 2018-19					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: One of the key disciplines that underpin mechanical engineering is introduced in this module and supported by practical laboratory exercises. This foundation of knowledge presented here will be used to extend specialist knowledge in future years.

Outline Syllabus: Stress Analysis: Stress Concentration Un-symmetric bending, Curved beams, Bending of composite beams Torsion (non-circular cross sections) Elementary elastic plastic analysis, Buckling of struts, Beams deflections, Mohr's Circle for stress and strain, Rosette analysis, Failure criteria for ductile and brittle materials, Experimental Stress Analysis:

Torsion (non-circular cross sections), Buckling of struts, Beams deflections, Rosette analysis, Un-symmetric bending, Curved beams,

Teaching and Learning Methods: Large group lecture supported by small tutorials and laboratory sessions. Study time outside of contact hours will be spent on going through exercises and example problems.

Lab sessions (Group work) will provide experience of empirical methods and comparison with theoretical analysis

Scheduled learning includes lectures, tutorials and lab sessions. Independent learning includes hours engaged with essential reading, assignment preparation and completion.

Part 3: Assessment

Component A: Exam

Assessed via end of semester Exam (3 hours) to assess the students understanding of concepts and techniques and a series of online e-assessment tests to encourage engagement and provide formative feedback.

Component B: Laboratory report

Assessed via end of semester report. Students will work in groups to carry out a series of experiments. Each student will write a detailed report on one of those experiments and reflect on other experiments carried out by the rest of the group.

First Sit Components	Final Assessment	Element weighting	Description
Online Assignment - Component A		18.75 %	Online tests
Laboratory Report - Component B		25 %	Lab report
Examination - Component A	~	56.25 %	Exam (3 hours)
Resit Components	Final Assessment	Element weighting	Description
Laboratory Report - Component B		25 %	Lab report
Examination - Component A	~	75 %	Exam

		Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will be able to:						
	Module Learning Outcomes						
	MO1 Show a detailed knowledge and understanding of the						
			experimental Stress analysis and structural behaviour with				
		regard to the standard engineering com	regard to the standard engineering components and artefacts				
	MO2 Demonstrate subject specific skills with respect to solv						
		complex problems in the general stress					
		engineering components and understar involved.	ngineering components and understand the design principles				
	МОЗ	tross analysis techniques					
		Select, apply and evaluate advanced stress analysis techniques for a wide range of engineering problems					
	MO4		Demonstrate a comprehensive understanding of analytical and				
			experimental methods for the solution of strength and stiffness				
	MO5	Demonstrate a comprehensive underst	derstanding of structures				
		, , , , , , , , , , , , , , , , , , , ,	subjected to a variety of load types and be able to predict modes				
			of failure.				
	MO6	Model and simplify real problems, and a	apply mathematical				
		methods of analysis					
Contact Hours	Contact Hours						
	Independent Stud	114 114					
	Scheduled Learning and Teaching Hours:						
	Face-to-fa	36					
		Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocation	150					
	Allocated Hours	150					
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfqa-15-2.html						
	I						