

MODULE SPECIFICATION

Part 1: Information							
Module Title	Mechatronics						
Module Code	UFMFR9-15-2		Level	Level 5			
For implementation from	2020-21						
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [FET Dept of Engineering Design & Mathematics					
Module Type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co-requisites		None					
Module Entry Requirements		None					
PSRB Requirements		None					

Part 2: Description

Overview: The primary aim of this module is to enable the student to appreciate Mechatronics as a design philosophy with the objective of optimal integration of Mechanical, Electronics and Software Engineering to produce superior products, processes or systems.

Educational Aims: See Learning Outcomes.

Outline Syllabus: The syllabus may include but not be limited to the following:

MECHANICAL ELEMENTS: Acceleration, Velocity, Torque, Inertia; Mechanical transmission; Gearboxes, pulley, belt and chains; Linear and Rotary bearings; Machine screws and Splined shafts.

SENSORS and SENSOR CHARACTERISTICS: Linearity, repeatability, resolution etc. for a range of sensors and principle of operation of various sensors.

SYSTEMS INTEGRATION: Rotary and linear electric motors, gearboxes and shafts integration.

SYSTEMS MODELLING and CONTROL: Open, close loop control; Novel controllers; System

STUDENT AND ACADEMIC SERVICES

performance measures; Controllers PC and PLC and Embedded; Software for control, Languages and Platforms.

Examples of mechatronic systems may include: Robots, Machine tools; Car Engine management system etc.

Teaching and Learning Methods: Large group lecture, study time outside of contact hours will be spent on going through exercises and example problems and laboratory tasks.

Lab sessions (small groups) will provide experience of real systems with their nonlinearity's and will require further non-contact time or assignment preparation.

Scheduled learning includes lectures, lab sessions.

Independent learning includes hours engaged with essential reading, assignment preparation and completion and laboratory work.

Contact: 36 hours

Assimilation and skill development: 63 hours

Coursework: 17 hours Exam preparation: 34 hours

Total: 150 hours

Part 3: Assessment

Assessed via end of semester lab based exam to assess the students understanding of concepts and techniques.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A		100 %	Lab based assessment for practical work and laboratory project (3 hours)
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A		100 %	Lab based assessment for practical work and laboratory project (3 hours)

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes	Reference				
	Ability to apply quantitative methods and computer software relevant to Mechatronic systems and solve Mechatronic system problems	MO1				
	Identifying and Creating mathematical and computer aided models for simple mechatronics systems	MO2				
	Formulating test procedures for performance measurement of mechatronic systems	MO3				
	Selection of actuators, mechanical elements, control elements and software for the efficient performance of specific Mechatronic systems	MO4				
	Selection of sensors based on an understanding of their key characteristics	MO5				

STUDENT AND ACADEMIC SERVICES

	Investigate and define a problem and identify constrains including environr and sustainability limitations, health and safety and risk assessment issues the modelling skills acquired in this module for investigation of mechatronic systems	s. Use				
	Propose a Mechatronics solution for a simple electromechanical system	MO7				
Contact Hours	Independent Study Hours:					
	Independent study/self-guided study	114				
	Total Independent Study Hours:	114				
	Scheduled Learning and Teaching Hours:	26				
	Face-to-face learning	36				
	Total Scheduled Learning and Teaching Hours:	36				
	Hours to be allocated	150				
	Allocated Hours	150				
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfr9-15-2.html					

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Aerospace Engineering (Systems) [Sep][FT][Frenchay][4yrs] MEng 2019-20

Aerospace Engineering (Manufacturing) [Sep][SW][Frenchay][5yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies (Manufacturing) [Sep][SW][Frenchay][5yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies (Systems) [Sep][SW][Frenchay][5yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies (Systems) [Sep][FT][Frenchay][4yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies (Manufacturing) [Sep][FT][Frenchay][4yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies (Manufacturing) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Aerospace Engineering with Pilot Studies (Systems) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Aerospace Engineering with Pilot Studies (Systems) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Aerospace Engineering (Manufacturing) [Sep][FT][Frenchay][4yrs] MEng 2019-20

Aerospace Engineering (Systems) [Sep][SW][Frenchay][5yrs] MEng 2019-20

Aerospace Engineering (Manufacturing) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Aerospace Engineering (Manufacturing) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

STUDENT AND ACADEMIC SERVICES

Aerospace Engineering (Systems) [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Aerospace Engineering (Systems) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Automation and Robotics Engineering (Foundation) [Feb][FT][GCET][4yrs] BEng (Hons) 2018-19

Automation and Robotics Engineering (Foundation) [Oct][FT][GCET][4yrs] BEng (Hons) 2018-19

Aerospace Engineering with Pilot Studies (Manufacturing) {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Aerospace Engineering with Pilot Studies (Systems) {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Aerospace Engineering with Pilot Studies (Manufacturing) {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Aerospace Engineering with Pilot Studies (Systems) {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Aerospace Engineering (Manufacturing) {Apprenticeship} [Sep][PT][UCW][4yrs] BEng (Hons) 2018-19

Aerospace Engineering (Manufacturing) {Apprenticeship} [Sep][PT][UCW][5yrs] BEng (Hons) 2018-19

Aerospace Engineering (Systems) {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Aerospace Engineering (Manufacturing) {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Aerospace Engineering (Systems) {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Aerospace Engineering (Manufacturing) {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Aerospace Engineering [Sep][SW][Frenchay][5yrs] MEng 2019-20

Aerospace Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Aerospace Engineering with Pilot Studies [Sep][SW][Frenchay][5yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Aerospace Engineering with Pilot Studies [Sep][FT][Frenchay][4yrs] MEng 2019-20

Aerospace Engineering with Pilot Studies (Manufacturing) [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Aerospace Engineering [Sep][FT][Frenchay][4yrs] MEng 2019-20

Aerospace Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Aerospace Engineering with Pilot Studies (Foundation) [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Aerospace Engineering (Foundation) [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Aerospace Engineering with Pilot Studies (Foundation) [Sep][SW][Frenchay][5yrs] BEng (Hons) 2019-20

Aerospace Engineering (Foundation) [Sep][SW][Frenchay][5yrs] BEng (Hons) 2019-20