

MODULE SPECIFICATION

Part 1: Information							
Module Title	Mathematics for Signals and Control						
Module Code	UFMFL9-15-2		Level	Level 5			
For implementation from	2020-	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET I	Dept of Engin Design & Mathematics					
Module type:	Stand	ndard					
Pre-requisites		Engineering Mathematics 2020-21					
Excluded Combinations		None					
Co- requisites N		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Fourier Series: periodic functions and fundamental period, definition and computation of Fourier series, convergence of Fourier series, Fourier series of odd and even functions, half-range Fourier series, complex notation, amplitude and phase spectra.

Fourier Transforms: definition of the Fourier transform, spectra, properties of the Fourier transform, inverse Fourier transform, convolution.

Laplace Transforms: solution of linear differential equations, transfer functions, initial and final value theorems, convolution.

Z Transforms: definition of a z transform, sampling, properties of a z transform, inverse z transform, solving difference equations, z transfer function.

Systems of linear differential equations:, solution using eigenvalues and eigenvectors, system stability (definition and determination via eigenvalues); solution via Laplace transform, poles and system stability

Control theory: state-space models, transfer-function, matrix solution, poles and system stability.

Teaching and Learning Methods: Contact time: 36 hours

Assimilation and development of knowledge: 75 hours

Assessment: 39 hours

TOTAL: 150 HOURS

The module is delivered by means of lectures and tutorials. To prepare for assessment, students will be expected to undertake self directed learning in addition to the directed learning which supports taught classes.

Part 3: Assessment

The examination is summative and assesses students' understanding of concepts and techniques and their ability to apply them in relatively straightforward problems.

Coursework is both summative and formative, and consists of a series of eassessments using the Dewis system, designed to test student's ability to use concepts and techniques covered in lectures.

Feedback from coursework is intended to assist students to prepare for the end-of-year examination.

First Sit Components	Final	Element	Description
First sit components	Assessment		Description
Examination (Online) - Component A	~	75 %	Online Examination
Online Assignment - Component B		25 %	E-assessments
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	~	75 %	Online Examination
Online Assignment - Component B		25 %	E-assessments

Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:					
	Module Learning Outcomes	Reference				
	Use mathematical concepts and language to describe problems arising in control theory and signal processing	MO1				
	Solve such problems using transform and state-space methods	MO2				
	Show an understanding of the strengths and limitations of such methods	MO3				
	Communicate mathematical ideas and concepts in written form	MO4				
Contact Hours	Independent Study Hours:					

	Independent study/self-guided study	114					
	Total Independent Study Hours:	114					
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	36					
	Total Scheduled Learning and Teaching Hours:	36					
	Hours to be allocated	150					
	Allocated Hours	150					
Reading List	The reading list for this module can be accessed via the following link:						
	https://uwe.rl.talis.com/modules/ufmfl9-15-2.html						

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Robotics [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Electronic and Computer Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2019-20

Electronic and Computer Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Robotics [Sep][SW][Frenchay][4yrs] BEng (Hons) 2019-20

Automation and Robotics Engineering {Foundation} [Feb][FT][GCET][4yrs] BEng (Hons) 2018-19

Robotics {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Robotics {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Electronics and Telecommunication Engineering [Feb][FT][GCET][4yrs] BEng (Hons) 2018-19

Electronics and Telecommunication Engineering [Oct][FT][GCET][4yrs] BEng (Hons) 2018-19

Automation and Robotics Engineering {Foundation} [Oct][FT][GCET][4yrs] BEng (Hons) 2018-19

Instrumentation and Control Engineering {Foundation} [Feb][FT][GCET][4yrs] BEng (Hons) 2018-19

Instrumentation and Control Engineering {Foundation} [Oct][FT][GCET][4yrs] BEng (Hons) 2018-19

Electronic Engineering [Sep][PT][Frenchay][6yrs] BEng (Hons) 2018-19

Electronic Engineering {Foundation} [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Electronic Engineering {Foundation} [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Electronic and Computer Engineering [Sep][PT][GlosColl][5yrs] BEng (Hons) 2019-20