
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Entertainment Software Development

Module Code UFCFWA-30-1 Level Level 4

For implementation
from

2018-19

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Contributes towards

 Games Technology [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

 Digital Media [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

 Games Technology [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

 Digital Media [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

 Digital Media [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

 Digital Media [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

 Digital Media [Sep][FT][SHAPE][3yrs] BSc (Hons) 2018-19

 Digital Media [Sep][FT][SHAPE][3yrs] BSc (Hons) 2018-19

Module type:

Standard

Pre-requisites

None

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

STUDENT AND ACADEMIC SERVICES

2

Part 2: Description

Educational Aims: The aim of this module is to introduce students to fundamental concepts
underpinning computer games programming, including the C++ programming language and
fundamental software development practices, problem solving techniques and mathematics
which, together, will allow students to confidently write code that solves typical games
programming problems.

Outline Syllabus: Below is a list of module topics.

Introduction to the C++ programming language:

Variables and operators
Control structures and execution flow
Functions
Classes and object orientation
IDEs and compilation / execution / debugging processes

Software development process:

Problem solving with code / functional decomposition, from planning to implementation
Object oriented decomposition and UML notation
Testing strategies
Coding style considerations and documentation practices
Hardware resource implications and routes for optimisation
An introduction to threading and related software design implications

Mathematics:

Set theory and logic: operators, truth tables, simple propositional / predicate logic.
Computer arithmetic: binary, decimal and hexadecimal representations.
Algebra: basic manipulation, Cartesian coordinates, lines, curves and linear equations.
Trigonometry, functions, tangents, and normals as applied to geometry.

Teaching and Learning Methods: This module will involve 6 hours contact time per fortnight.
The time will be divided between lectures and studio sessions as appropriate.
Extra, targeted, drop in sessions may be arranged prior to portfolio hand-ins.

Contact time: 72 hours
Assimilation and development of knowledge: 148 hours
Exam preparation: 20 hours
Coursework preparation: 60 hours
Total study time: 300 hours

Lectures will introduce programming concepts whilst being practically explored within supervised
studio sessions guided by tutorial tasks.

A set number of the tutorial tasks are to be completed to form individual lab logbooks.

Aside from the tutorial tasks, students will be set a small number of more challenging tasks to
implement taught concepts, using supplied designs / code / libraries where appropriate. It is
expected that the majority of this work will be carried out independently, outside of taught
sessions, though assessment specific sessions will be organised to provide targeted help with
these tasks prior to hand-in.

STUDENT AND ACADEMIC SERVICES

3

Part 3: Assessment

Formative assessment:

The tutorial tasks set for the module will be peer and tutor reviewed regularly in studio/practical sessions.
Completed tasks will contribute to a logbook, which forms part of the students’ portfolios. While this logbook
contributes to the summative assessment, it is assessed on a pass/fail basis only, and is designed to encourage
student engagement.

Summative assessment:

In addition to the tutorial tasks, a small number of more challenging tasks will be set. These tasks form the
summative part of the portfolio for the module, and will be set in order of increasing complexity/weighting. The
reason behind this strategy is to align assessed tasks with the topics being taught, and distribute workload for the
module across the year. These will be assessed through inclass demos.

A final examination for the module will assess detailed understanding of taught material that form part of several
learning outcomes but cannot easily be assessed through practical tasks.

First Sit Components Final
Assessment

Element
weighting

Description

 Portfolio - Component B 75 % Portfolio of practical exercises and lab logbook

 Examination - Component A
✓ 25 % Examination (2 hours

Resit Components Final
Assessment

Element
weighting

Description

 Portfolio - Component B 75 % Portfolio of practical exercises and lab logbook

 Examination - Component A
✓ 25 % Examination

STUDENT AND ACADEMIC SERVICES

4

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will be able to:

 Module Learning Outcomes

MO1 Write, compile and run high-level computer programs
demonstrating appropriate use of the C++ language syntax

MO2 Utilise the debugging facilities of an IDE (such as Visual Studio)
to identify, analyse and resolve run-time errors

MO3 Use methodical processes to analyse and decompose typical
games programming problems in order to design, implement and
evaluate their algorithmic solutions

MO4 Employ software engineering techniques and associated notation
to illustrate and interpret small-scale software designs

MO5 Apply fundamental mathematical concepts from algebra,
trigonometry, computational arithmetic, logic and set theory, to
solve games programming problems

MO6 Discuss the role of threading in computer programming and its
impact on program design

Contact
Hours

Contact Hours

Independent Study Hours:

Independent study/self-guided study 228

Total Independent Study Hours: 228

Scheduled Learning and Teaching Hours:

Face-to-face learning 72

Total Scheduled Learning and Teaching Hours: 72

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/modules/ufcfwa-30-1.html

