
STUDENT AND ACADEMIC SERVICES

1

MODULE SPECIFICATION

Part 1: Information

Module Title Programming in C

Module Code UFCFF6-30-1 Level Level 4

For implementation
from

2018-19

UWE Credit Rating

30 ECTS Credit Rating 15

Faculty Faculty of Environment &
Technology

Field

Computer Science and Creative
Technologies

Department FET Dept of Computer Sci & Creative Tech

Contributes towards

 Computing [Sep][SW][Frenchay][4yrs] BSc (Hons) 2018-19

 Computing {Dual} [Mar][SW][Taylors][4yrs] BSc (Hons) 2018-19

 Computing {Dual} [Aug][SW][Taylors][4yrs] BSc (Hons) 2018-19

 Electronic and Computer Engineering [Sep][FT][Frenchay][3yrs] BEng (Hons) 2018-19

 Computing [Sep][FT][Frenchay][3yrs] BSc (Hons) 2018-19

 Computing {Dual} [Mar][FT][Taylors][3yrs] BSc (Hons) 2018-19

 Computing {Dual} [Aug][FT][Taylors][3yrs] BSc (Hons) 2018-19

 Electronic and Computer Engineering [Sep][SW][Frenchay][4yrs] BEng (Hons) 2018-19

 Electronic and Computer Engineering {Top Up} [Aug][FT][SHAPE][1yr] BEng (Hons)
2018-19

 Electronic and Computer Engineering {Top Up} [Aug][PT][SHAPE][2yrs] BEng (Hons)
2018-19

 Electronic and Computer Engineering [Sep][PT][GlosColl][5yrs] BEng (Hons) 2018-19

 Electronic and Computer Engineering {Apprenticeship} [Sep][PT][GlosColl][5yrs] BEng
(Hons) 2018-19

Module type:

Standard

Pre-requisites

None

Excluded Combinations

None

Co- requisites

None

Module Entry requirements

None

STUDENT AND ACADEMIC SERVICES

2

Part 2: Description

Educational Aims: See Learning Outcomes

Outline Syllabus: Basic syntax of ISO90 C to support a structured approach to program
development using procedural abstractions - program and control structures - basic data types -
reuse of basic functions for I/O, string and mathematical manipulation.

Structured types - arrays, vectors and classes as records. Algorithm design. Simple file
processing.

The use of functions and parameters. Global and local variables.

Bit-wise and logical operators.

Using pointers for accessing data and evoking functions.

Problem analysis and design using a structured, step-wise refinement approach.

Structure charts as effective documentary aids for HLL programs.

Introduction to the use of FSDs for event-driven applications, and the implementation of FSMs as
FSTs.

Elementary introduction to the problems of multi-tasking.

Speed control for a small DC motor. Driving a stepper motor from a processor.

Use of make files and project configuration specs.

An introduction to data structures.

An introduction to object oriented concepts including classes, objects, inheritance and
polymorphism.

Teaching and Learning Methods: This module will involve 6 hours contact time per fortnight.
The time will be more or less equally divided between lecture sessions, laboratory sessions.

Contact time: 72 hours
Assimilation and development of knowledge: 148 hours
Exam preparation: 40 hours
Coursework preparation: 40 hours
Total study time: 300 hours

The module will be taught with a very strong emphasis on practical work and the development of
understanding by numerous demonstrations and simple, progressive exercises.

The first half of the course will concentrate on teaching basic syntax and use of a structured,
stepwise-refinement approach to design and implementation with exposure to structure charts
and finite state diagrams.

The second half of the course will develop an understanding of the difficulties involved with I/O
programming. Event driven programs will be implemented using finite state methods.

An extended case-study, supported by focussed laboratory based workshops, will allow the
students to follow through an example application from design to implementation, and appreciate
the relevance of all the component parts of the module syllabus.

Lectures will be used to introduce concepts, syntax and design methods. Laboratory sessions
(workshops) will be used to practice and reinforce the students understanding of these. Students

STUDENT AND ACADEMIC SERVICES

3

will be expected to work for an equivalent amount of their own time independently on the
workshop material, and to independently read their reference book.

The module will be supported by the Faculty’s Peer Assisted Learning (PAL) programme. Please
see the Faculty web pages for more details of the programme.

Scheduled learning includes lectures and workshops.
Independent learning includes hours engaged with essential reading, assignment preparation
and completion etc.

Part 3: Assessment

Assessment will be by two practical exercises and a formal examination. This strategy has been chosen as the
examination tests the student’s knowledge of the theory that they require in order to be successful at the
coursework, thus reducing the impact of issues such as collusion.

The first coursework exercise will contribute only a small amount to the overall assessment. This will enable
students to receive written feedback on their progress. In class exercises will be used formatively and will be
another opportunity for students to receive feedback. A significant percentage of the marks will be awarded for the
students demonstrating and explaining their work.

The second coursework exercise will be a substantial control based, problem solving programming exercise.
Students may choose to complete this individually or in pairs. This will contribute the bulk of the component B
assessment. The overwhelming majority of the marks for this work will be awarded through the student
demonstrating and explaining their work.

A formal examination will be used to enable the students to demonstrate their understanding of C programming and
basic design.
This examination will be set as a two hour paper.

First Sit Components Final
Assessment

Element
weighting

Description

 Set Exercise - Component B
 10 %

Practical coursework 1 involving the development of
programme code.

 Set Exercise - Component B
 40 %

Practical coursework 2 involving the development and
demonstration of programme code.

 Examination - Component A
✓ 50 % Examination (2 hours)

Resit Components Final
Assessment

Element
weighting

Description

 Set Exercise - Component B
 50 %

Practical exercises involving the development of
programme code.

 Examination - Component A
✓ 50 % Examination (2 hours

STUDENT AND ACADEMIC SERVICES

4

Part 4: Teaching and Learning Methods

Learning
Outcomes

On successful completion of this module students will be able to:

 Module Learning Outcomes

MO1 Show a detailed knowledge of the C programming language

MO2 Demonstrate an understanding of finite state design

MO3 Demonstrate an understanding of structural design approaches

MO4 Demonstrate problem solving and programming skills

MO5 Understand the structures involved in both procedural and object
oriented languages

Contact
Hours

Contact Hours

Independent Study Hours:

Independent study/self-guided study 228

Total Independent Study Hours: 228

Scheduled Learning and Teaching Hours:

Face-to-face learning 72

Total Scheduled Learning and Teaching Hours: 72

Hours to be allocated 300

Allocated Hours 300

Reading
List

The reading list for this module can be accessed via the following link:

https://uwe.rl.talis.com/modules/ufcff6-30-1.html

