

MODULE SPECIFICATION

Part 1: Information						
Module Title	Modelling and Optimisation					
Module Code	UFMFM3-30-1		Level	Level 4		
For implementation from	2020-21					
UWE Credit Rating	30		ECTS Credit Rating	15		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [FET Dept of Engin Design & Mathematics				
Module type:	Stand	Standard				
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: In this module the student will meet a wide range of different types of mathematical models. This should enable the student to gain an appreciation of the mathematical modelling process, especially concerning the way in which it seeks to simplify so that reality can be analysed mathematically. In doing this the student should realise the power of such models to provide useful answers to real problems

Outline Syllabus: The Nature of Modelling: Underlying assumptions, modelling techniques, verification presentation of information; algebraic, numerical and graphical. Interpretation and communication of results.

Graph theory: definitions, isomorphic graphs, examples, sub-graphs, operation on graphs, paths, cycles, components, vertex degrees matrices associated with graphs, regular graphs, metric characteristics, Koenig's Theorem, line graphs, Trees, Simple Algorithms (minimal spanning tree; shortest paths).

Linear Programming: Formulation, Graphical Solutions Sensitivity analysis, Simplex method (based on explanation relating it to Gaussian elimination, and the dimension of the solution space). Excel Solver.

STUDENT AND ACADEMIC SERVICES

Decision Analysis techniques: Decision Making Criteria, maximin, maximax, minimax and expected value Decision Trees, networks, critical paths. Activity-on-node networks, types of activity dependency relationship, activity times and float, Gantt charts, PERT.

Calculus based techniques: Identification of stationary points for curves and surfaces, global and local maxima and minima, constraints.

The following areas are indicative of the examples that will be used to illustrate the above modelling approaches; project planning, stock control, asset allocation, financial modelling, queuing, forecasting, geometry, physical problems.

Teaching and Learning Methods: Scheduled teaching hours will typically take the form of:

Contact time: 72 hours

Assimilation and development of knowledge: 150 hours

Coursework preparation: 22 hours

Examination preparation: 56 hours

TOTAL: 300 HOURS

The module is delivered by means of lectures, tutorials and workshops. The role of these different delivery mechanisms within the learning strategy is:

Whole group lectures, used to deliver new material and to consolidate previous material

Tutorials, with activities designed to enhance the understanding of the material delivered in the lectures and to apply the skills and knowledge learned from the lectures. These will also be used to work on PC's where this is appropriate.

Workshops delivered to the whole group where a case study or exam style questions are covered

Self-directed learning, to prepare for contact sessions and assessments.

Part 3: Assessment

The assessment strategy is designed to build confidence with the concepts and material during the year as students work towards the end of year examination. The coursework will consist of a number of short activities either e-assessment or short investigations which can be marked and returned to students quickly to provide timely feedback. To this end

Component B focusses on work covered in semester 1 while Component A focusses on work in semester 2.

Each investigation requires students to demonstrate understanding of certain techniques, model a problem, find a solution, and write a short report which will require them to consider the strengths and weaknesses of the model that they have produced.

Component A also contains the library workbook exercise designed to promote skills to search for information and the appropriate use of references in the context of an applied mathematics problem.

STUDENT AND ACADEMIC SERVICES

First Sit Components	Final Assessment	Element weighting	Description
Online Assignment - Component A		10 %	Library workbook
Written Assignment - Component A		40 %	Investigation 2
Online Assignment - Component B		10 %	E-assessment
Written Assignment - Component B	✓	40 %	Investigation 2
Resit Components	Final Assessment	Element weighting	Description
Written Assignment - Component A	✓	50 %	Investigation 2
Written Assignment - Component B		50 %	Investigation 1

Part 4: Teaching and Learning Methods					
Learning Outcomes	On successful completion of this module students will achieve the follo	wing learning	outcomes:		
	Module Learning Outcomes		Reference		
	Develop simple models in a wide variety of real (though simple) situations using a range of techniques from linear algebra, operational research, graph theory and calculus				
	Determine solutions using appropriate optimisation techniques to a variety of problems				
	Interpret the solutions provided by the models back into the real context of the problem				
	Understand the limitations of the models and the solutions provided, and demonstrate an awareness of the effect of the simplifying assumptions made to enable the models to function				
	Demonstrate an understanding of the modelling process, having seer range of different methods and techniques		MO5		
	Demonstrate the ability to use library and internet resources for research	rch activities	MO6		
Contact Hours	Independent Study Hours:				
	Independent study/self-guided study	22	8		
	Total Independent Study Hours:	22	8		
	Scheduled Learning and Teaching Hours:				
	Face-to-face learning 72				

STUDENT AND ACADEMIC SERVICES

	Total Scheduled Learning and Teaching Hours:	72		
		200		
	Hours to be allocated	300		
	Allocated Hours	300		
Reading List	The reading list for this module can be accessed via the following link:			
	https://uwe.rl.talis.com/modules/ufmfm3-30-1.html			

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mathematics with Qualified Teacher Status (QTS) [Sep][FT][Frenchay][3yrs] BSc (Hons) 2020-21

Mathematics with Qualified Teacher Status (QTS) {Foundation} [Sep][FT][Frenchay][4yrs] BSc (Hons) 2019-20

Mathematics {Foundation} [Sep][FT][Frenchay][5yrs] BSc (Hons) 2019-20

Mathematics {Foundation} [Sep][SW][Frenchay][5yrs] BSc (Hons) 2019-20