

MODULE SPECIFICATION

Part 1: Information						
Module Title	Fluid Dynamics					
Module Code	UFMFG3-15-1		Level	Level 4		
For implementation from	2020-21					
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics		
Department	FET [Dept of Engin Design & Mathematics				
Module type:	Standard					
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: Fluid flow analysis is one of the disciplines that underpin many areas of engineering. This module is designed to provide a solid foundation of knowledge, with practical exercises to reinforce which will be used to extend specialist knowledge in future years.

Outline Syllabus: Introduction to fluid dynamics, pressure, density, hydrostatic pressure

Volumetric and mass flow rates, continuity and Bernoulli's equation

Flow measurement devices and calculations

Dimensional analysis for engineering problems

Flow types: laminar and turbulent flow, characteristics

Solving laminar flow problems

Solving turbulent flow problems

Minor losses in pipe networks

Fluid machines (to calculate operating point in terms of volumetric flow rate) and calculate efficiency

Fluid momentum problems

Introduction to basic aerodynamics

Teaching and Learning Methods: Large group lecture supported by small group tutorial sessions. Study time outside of contact hours will be spent on going through exercises and example problems.

Lab sessions (small groups) will provide experience of empirical methods and techniques of experimental engineering.

Scheduled learning includes lectures, tutorials and laboratory session. Approximate time: Lectures: 24 hours Tutorials: 12 hours Laboratory: 2 hours

Independent learning includes hours engaged with essential reading, assignment preparation and completion etc

Part 3: Assessment

Component A:

Assessed via end of semester Exam to assess underlying concepts, principles and applications.

Formative assessment (not contributing to module mark) is provided via support in tutorial sessions.

First Sit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	\checkmark	100 %	Online Examination
Resit Components	Final Assessment	Element weighting	Description
Examination (Online) - Component A	\checkmark	100 %	Online Examination

Learning	On successful completion of this module students will achieve the follo	wing learning o	outcomes:					
Outcomes								
	Module Learning Outcomes							
	Show a detailed knowledge and understanding of key principles in fluid dynamics analysis							
	Demonstrate an understanding and knowledge of modelling and solving numerical problems in fluid dynamics, based on knowledge of the relevant engineering principles							
	Demonstrate the ability to apply appropriate theoretical and practical methods to the analysis and solution of fluid dynamics engineering problems							
	Show cognitive skills with respect to modelling and simplifying real problems, and applying mathematical methods of analysis							
	Demonstrate key transferable skills in problem formulation and decision making, interpreting experimental results							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	11	112					
	Total Independent Study Hours: 11							
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	38	38					
	Total Scheduled Learning and Teaching Hours:	38	3					
	Hours to be allocated	15	150					
	Allocated Hours	15	0					
Reading List	The reading list for this module can be accessed via the following link:							

Part 4: Teaching and Learning Methods

Part 5: Contributes Towards

This module contributes towards the following programmes of study: