

MODULE SPECIFICATION

Part 1: Information							
Module Title	Fluid Dynamics						
Module Code	UFMFG3-15-1		Level	Level 4			
For implementation from	2019-	20					
UWE Credit Rating	15		ECTS Credit Rating	7.5			
Faculty	Faculty of Environment & Technology		Field	Engineering, Design and Mathematics			
Department	FET [Compute Dept of Engin Design & Mathematics					
Module type:	Stand	Standard					
Pre-requisites		None					
Excluded Combinations		None					
Co- requisites		None					
Module Entry requirements		None					

Part 2: Description

Educational Aims: Fluid flow analysis is one of the disciplines that underpin many areas of engineering. This module is designed to provide a solid foundation of knowledge, with practical exercises to reinforce which will be used to extend specialist knowledge in future years.

Outline Syllabus: Introduction to fluid dynamics, pressure, density, hydrostatic pressure

Volumetric and mass flow rates, continuity and Bernoulli's equation

Flow measurement devices and calculations

Dimensional analysis for engineering problems

Flow types: laminar and turbulent flow, characteristics

Solving laminar flow problems

Solving turbulent flow problems

Minor losses in pipe networks

STUDENT AND ACADEMIC SERVICES

Fluid machines (to calculate operating point in terms of volumetric flow rate) and calculate efficiency

Fluid momentum problems

Introduction to basic aerodynamics

Teaching and Learning Methods: Large group lecture supported by small group tutorial sessions. Study time outside of contact hours will be spent on going through exercises and example problems.

Lab sessions (small groups) will provide experience of empirical methods and techniques of experimental engineering.

Scheduled learning includes lectures, tutorials and laboratory session.

Approximate time: Lectures: 24 hours Tutorials: 12 hours Laboratory: 2 hours

Independent learning includes hours engaged with essential reading, assignment preparation and completion etc

Part 3: Assessment

Component A:

Assessed via end of semester Exam (75%), which is a summative assessment.

Formative assessment (not contributing to module mark) is provided via support in tutorial sessions. End of semester exam is two hours.

Component B:

Short Laboratory Report prepared during the scheduled session (25%).

Formative assessment (not contributing to module mark) is provided via support in tutorial sessions.

First Sit Components	Final Assessment	Element weighting	Description
Laboratory Report - Component B		25 %	Laboratory report
Examination - Component A	✓	75 %	Examination (2 hours)
Resit Components	Final Assessment	Element weighting	Description
Laboratory Report - Component B		25 %	Laboratory report
Examination - Component A	✓		Examination

	Part 4: Teaching and Learning Methods							
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes							
	Module Learning Outcomes							
	Show a detailed knowledge and understanding of key principles in flue analysis	uid dynamics	MO1					
	Demonstrate an understanding and knowledge of modelling and solv problems in fluid dynamics, based on knowledge of the relevant engi principles		MO2					
	Demonstrate the ability to apply appropriate theoretical and practical the analysis and solution of fluid dynamics engineering problems	methods to	MO3					
	Show cognitive skills with respect to modelling and simplifying real prapplying mathematical methods of analysis		MO4 MO5					
	Demonstrate key transferable skills in problem formulation and decision making, interpreting experimental results							
Contact Hours	Independent Study Hours:							
	Independent study/self-guided study	112						
	Total Independent Study Hours:	11	2					
	Scheduled Learning and Teaching Hours:							
	Face-to-face learning	38						
	Total Scheduled Learning and Teaching Hours:	38						
	Hours to be allocated	150						
	Allocated Hours	150						
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmfg3-15-1.html							

STUDENT AND ACADEMIC SERVICES

Part 5: Contributes Towards

This module contributes towards the following programmes of study:

Mechanical Engineering and Vehicle Technology [Feb][FT][GCET][4yrs] BEng (Hons) 2018-19

Mechanical Engineering {Apprenticeship} [Sep][PT][Frenchay][6yrs] BEng 2018-19

Mechanical Engineering [Sep][PT][COBC][6yrs] BEng 2018-19

Mechanical Engineering and Vehicle Technology [Oct][FT][GCET][4yrs] BEng (Hons) 2018-19

Mechanical Engineering [Sep][PT][BTC][3yrs] FdSc 2018-19

Automotive Engineering (Foundation) [Sep][FT][Frenchay][5yrs] MEng 2018-19

Automotive Engineering (Foundation) [Sep][SW][Frenchay][6yrs] MEng 2018-19

Automotive Engineering (Foundation) [Sep][FT][Frenchay][4yrs] BEng (Hons) 2018-19

Automotive Engineering (Foundation) [Sep][SW][Frenchay][5yrs] BEng (Hons) 2018-19

Mechanical Engineering [Sep][PT][Frenchay][7yrs] MEng 2018-19

Mechanical Engineering (Foundation) [Sep][SW][Frenchay][5yrs] BEng 2018-19

Mechanical Engineering (Foundation) [Sep][FT][Frenchay][4yrs] BEng 2018-19

Mechanical Engineering (Foundation) [Sep][FT][Frenchay][5yrs] MEng 2018-19

Mechanical Engineering (Foundation) [Sep][SW][Frenchay][6yrs] MEng 2018-19

Mechanical Engineering [Sep][PT][Frenchay][6yrs] BEng 2018-19