

MODULE SPECIFICATION

Part 1: Information						
Module Title	Structural Integrity in Design					
Module Code	UFMEBP-15-M		Level	Level 7		
For implementation from	2019-	20				
UWE Credit Rating	15		ECTS Credit Rating	7.5		
Faculty	I	ty of Environment & nology	Field	Engineering, Design and Mathematics		
Department	FET	FET Dept of Engin Design & Mathematics				
Module type:	Standard					
Pre-requisites		None				
Excluded Combinations		None				
Co- requisites		None				
Module Entry requirements		None				

Part 2: Description

Educational Aims: See Learning Outcomes.

Outline Syllabus: The syllabus includes:

Structural integrity concepts

Failure criteria

Designing against fatigue

Non-destructive testing/inspection techniques

Structural health monitoring,

Application of fracture mechanics principles in the design/analysis of components for various loading conditions and materials

Teaching and Learning Methods: These will be based on a combination of lectures, discussions in small groups, case studies and tutorials.

This module is based on a lecture series outlining the fundamentals of structural integrity with regard to its application in the practice of engineering analysis and design.

Students will be expected to learn independently and carry out reading and directed study

STUDENT AND ACADEMIC SERVICES

beyond that available in taught classes.

Scheduled learning includes lectures and tutorials.

Independent learning includes hours engaged with essential reading, case study preparation, assignment (tutorial questions) preparation and completion etc.

There is a total of 24 scheduled contact hours for lecturing and tutoring Structural Integrity in Design per 15-credit module.

There is also a total of 12 office contact hours (1 hour per week) for formative feedback and support.

Additional 12 virtual contact hours (1 hour per week) for the preparation of teaching materials and other technology-aided related course materials.

Lectures/tutorials: 24 hours Surgery hours: 12 hours

Scheduled virtual contact hours: 12 hours

Self-directed learning: 72 hours Exam preparation: 30 hours Total hours: 150 hours

Part 3: Assessment

The assessment strategy is to employ one assessment vehicle — a 3 hour exam. Alongside the other modules at M-level, this forms a part of a more general strategy of mixed types of assessment.

The exam has been chosen since it provides a good opportunity to test, under controlled conditions, the breadth and depth of the student's knowledge in areas critical to the module. This mode of assessment is also favoured by the IMechE.

First Sit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	100 %	Examination (3 hours)
Resit Components	Final Assessment	Element weighting	Description
Examination - Component A	✓	100 %	Examination (3 hours)

	Part 4: Teaching and Learning Methods						
Learning Outcomes	On successful completion of this module students will achieve the following learning outcomes:						
	Module Learning Outcomes						
	Design and undertake substantial investigations to address significant areas of theory and/or practice						
	Select appropriate advanced methodological approaches and critically evaluate their effectiveness						
	Apply appropriate theoretical and practical methods to the analysis and solution engineering problems						
	Demonstrate and critically evaluate current theoretical and methodological approaches through use of professional literature						
	Act with initiative in decision-making within professional or given guidelines						
	Communicate effectively using professional engineering terms		MO6				
Hours	Independent Study Hours: Independent study/self-guided study	10)2				
	Total Independent Study Hours:	10)2				
	Scheduled Learning and Teaching Hours:						
	Face-to-face learning	4	8				
	Total Scheduled Learning and Teaching Hours:	4	8				
	Hours to be allocated	15	50				
	Allocated Hours	15	50				
Reading List	The reading list for this module can be accessed via the following link: https://uwe.rl.talis.com/modules/ufmebp-15-m.html						

Part 5: Contributes Towards
This module contributes towards the following programmes of study:
Mechanical Engineering [Sep][PT][Frenchay][2yrs] MSc 2018-19